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Preface
Augmented reality, driving assistance, video monitoring; more and more
applications are now using computer vision and image analysis
technologies, and yet we are still in the infancy of the development of
new computerized systems capable of understanding our worlds through
the sense of vision. And with the advent of powerful and affordable
computing devices and visual sensors, it has never been easier to create
sophisticated imaging applications. A multitude of software tools and
libraries manipulating images and videos are available, but for anyone
who wishes to develop smart vision-based applications, the OpenCV
library is the tool to use. OpenCV (Open source Computer Vision) is an
open source library containing more than 500 optimized algorithms for
image and video analysis. Since its introduction in 1999, it has been
largely adopted as the primary development tool by the community of
researchers and developers in computer vision. OpenCV was originally
developed at Intel by a team led by Gary Bradski as an initiative to
advance research in vision and promote the development of rich vision-
based, CPU-intensive applications. After a series of beta releases,
version 1.0 was launched in 2006. A second major release occurred in
2009 with the launch of OpenCV 2 that proposed important changes,
especially the new C++ interface, which we use in this book. In 2012,
OpenCV reshaped itself as a non-profit foundation (http://opencv.org/)
relying on crowdfunding for its future development. OpenCV3 was
introduced in 2013; changes were made mainly to improve the usability
of library. Its structure has been revised to remove the unnecessary
dependencies, large modules have been split into smaller ones and the
API has been refined. This book is the third edition of the OpenCV
Computer Vision Application Programming Cookbook and the first one
that covers OpenCV version 3. All the programming recipes of the
previous editions have been reviewed and updated. We also have added
new content and new chapters to provide readers with even better
coverage of the essential functionalities of the library. This book covers
many of the library’s features and explains how to use them to
accomplish specific tasks. Our objective is not to provide detailed

http://opencv.org/


coverage of every option offered by the OpenCV functions and classes
but rather to give you the elements you need to build your applications
from the ground up. We also explore, in this book, fundamental concepts
in image analysis and we describe some of the important algorithms in
computer vision. This book is an opportunity for you to get introduced
to the world of image and video analysis. But this is just the beginning.
The good news is that OpenCV continues to evolve and expand. Just
consult the OpenCV online documentation at http://opencv.org/ to stay
updated about what the library can do for you. You can also visit the
author’s website at http://www.laganiere.name/ for updated information
about this cookbook.

What this book covers
Chapter 1, Playing with Images, introduces the OpenCV library and
shows you how to build simple applications that can read and display
images. It also introduces the basic OpenCV data structures.

Chapter 2, Manipulating Pixels, explains how an image can be read. It
describes different methods for scanning an image in order to perform
an operation on each of its pixels.

Chapter 3, Processing the Colors of an Image, consists of recipes
presenting various object-oriented design patterns that can help you to
build better computer vision applications. It also discusses the concept
of colors in images.

Chapter 4, Counting the Pixels with Histograms, shows you how to
compute image histograms and how they can be used to modify an
image. Different applications based on histograms are presented that
achieve image segmentation, object detection, and image retrieval.

Chapter 5, Transforming Images with Morphological Operations,
explores the concept of mathematical morphology. It presents different
operators and how they can be used to detect edges, corners, and
segments in images.

http://opencv.org/
http://www.laganiere.name/


Chapter 6, Filtering the Images, teaches you the principle of frequency
analysis and image filtering. It shows how low-pass and high-pass filters
can be applied to images and presents the concept of derivative
operators.

Chapter 7, Extracting Lines, Contours, and Components, focuses on the
detection of geometric image features. It explains how to extract
contours, lines and connected components in an image.

Chapter 8, Detecting Interest Points, describes various feature point
detector in images.

Chapter 9, Describing and Matching Interest Points, explains how
descriptors of interest points can be computed and used to match points
between images.

Chapter 10, Estimating Projective Relations in Images, explores the
projective relations that exist between two images in the same scene. It
also describes how to detect specific targets in an image.

Chapter 11, Reconstructing 3D scenes, allows you to reconstruct the 3D
elements of a scene from multiple images and recover the camera pose.
It also includes a description of the camera calibration process.

Chapter 12, Processing Video Sequences, provide a framework to read
and write a video sequence and to process its frames. It shows you also
how it is possible to extract the foreground objects moving in front of a
camera.

Chapter 13, Tracking Visual Motion, addresses the visual tracking
problem. It shows you how to compute the apparent motion in videos. It
also explains how to track moving objects in an image sequence.

Chapter 14, Learning from Examples, introduces basic concepts in
machine learning. It shows how object classifiers can be built from
image samples.



What you need for this book
This cookbook is based on the C++ API of the OpenCV library. It is
therefore assumed that you have some experience with the C++
language. In order to run the examples presented in the recipes and
experiment with them, you need a good C++ development environment.
Microsoft Visual Studio and Qt are two popular choices. 



Who this book is for
This cookbook is appropriate for novice C++ programmers who want to
learn how to use the OpenCV library to build computer vision
applications. It is also suitable for professional software developers who
wants to be introduced to the concepts of computer vision programming.
It can be used as a companion book in university-level computer vision
courses. It constitutes an excellent reference for graduate students and
researchers in image processing and computer vision.



Sections
In this book, you will find several headings that appear frequently
(Getting ready, How to do it, How it works, There's more, and See also).
To give clear instructions on how to complete a recipe, we use these
sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to
set up any software or any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened
in the previous section.

There's more…
This section consists of additional information about the recipe in order
to make the reader more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the
recipe.



Conventions
In this book, you will find a number of text styles that distinguish
between different kinds of information. Here are some examples of
these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file
extensions, pathnames, dummy URLs, user input, and Twitter handles
are shown as follows: "We can include other contexts through the use of
the include directive."

A block of code is set as follows:

    // Compute Laplacian using LaplacianZC class
    LaplacianZC laplacian;
    laplacian.setAperture(7); // 7x7 laplacian
    cv::Mat flap= laplacian.computeLaplacian(image);
    laplace= laplacian.getLaplacianImage();

When we wish to draw your attention to a particular part of a code
block, the relevant lines or items are set in bold:

    // Compute Laplacian using LaplacianZC class
    LaplacianZC laplacian;
    laplacian.setAperture(7); // 7x7 laplacian
    cv::Mat flap= laplacian.computeLaplacian(image);
    laplace= laplacian.getLaplacianImage();

New terms and important words are shown in bold. Words that you
see on the screen, for example, in menus or dialog boxes, appear in the
text like this: "Clicking the Next button moves you to the next screen."



Reader feedback
Feedback from our readers is always welcome. Let us know what you
think about this book-what you liked or disliked. Reader feedback is
important for us as it helps us develop titles that you will really get the
most out of.

To send us general feedback, simply e-mail feedback@packtpub.com,
and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in
either writing or contributing to a book, see our author guide
at www.packtpub.com/authors .

http://www.packtpub.com/authors


Customer support
Now that you are the proud owner of a Packt book, we have a number
of things to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

You can download the code files by following these steps:
1. Log in or register to our website using your e-mail address and

password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book

from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This page
can be accessed by entering the book's name in the Search box. Please
note that you need to be logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at

http://www.packtpub.com
http://www.packtpub.com/support


https://github.com/PacktPublishing/OpenCV3-Computer-Vision-
Application-Programming-Cookbook-Third-Edition . We also have other
code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

The source code files of the examples presented in this cookbook are
also hosted in the author's Github repository. You can visit the author's
repository at https://github.com/laganiere to obtain the latest version of
the code.

Downloading the color images of this book 
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file
from https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionApplicationProgrammingCookbookThirdEdition_ColorImages.pdf

Errata
Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you find a mistake in one of our books-
maybe a mistake in the text or the code-we would be grateful if you
could report this to us. By doing so, you can save other readers from
frustration and help us improve subsequent versions of this book. If you
find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking
on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted
and the errata will be uploaded to our website or added to any list of
existing errata under the Errata section of that title.

To view the previously submitted errata, go to
https://www.packtpub.com/books/content/support and enter the name of
the book in the search field. The required information will appear under
the Errata section.

Piracy

https://github.com/PacktPublishing/OpenCV3-Computer-Vision-Application-Programming-Cookbook-Third-Edition
https://github.com/PacktPublishing/
https://github.com/laganiere
https://www.packtpub.com/sites/default/files/downloads/OpenCV3ComputerVisionApplicationProgrammingCookbookThirdEdition_ColorImages.pdf
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Piracy of copyrighted material on the Internet is an ongoing problem
across all media. At Packt, we take the protection of our copyright and
licenses very seriously. If you come across any illegal copies of our
works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the
suspected pirated material.

We appreciate your help in protecting our authors and our ability to
bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us
at questions@packtpub.com, and we will do our best to address the
problem.



Chapter 1. Playing with Images
In this chapter, we will get you started with the OpenCV library. You
will learn how to perform the following tasks:

Installing the OpenCV library
Loading, displaying, and saving images
Exploring the cv::Mat data structure
Defining regions of interest

Introduction
This chapter will teach you the basic elements of OpenCV and will show
you how to accomplish the most fundamental image processing tasks:
reading, displaying, and saving images. However, before you start with
OpenCV, you need to install the library. This is a simple process that is
explained in the first recipe of this chapter.

All your computer vision applications will involve the processing of
images. This is why OpenCV offers you a data structure to handle
images and matrices. It is a powerful data structure with many useful
attributes and methods. It also incorporates an advanced memory
management model that greatly facilitates the development of
applications. The last two recipes of this chapter will teach you how to
use this important data structure of OpenCV.



Installing the OpenCV library
OpenCV is an open source library for developing computer vision
applications that can run on multiple platforms, such as Windows,
Linux, Mac, Android, and iOS. It can be used in both academic and
commercial applications under a BSD license that allows you to freely
use, distribute, and adapt it. This recipe will show you how to install the
library on your machine.

Getting ready
When you visit the OpenCV official website at http://opencv.org/ , you
will find the latest release of the library, the online documentation
describing the Application Programming Interface (API), and many
other useful resources on OpenCV.

How to do it...
From the OpenCV website, find the latest available downloads and
select the one that corresponds to the platform of your choice
(Windows, Linux/Mac, or iOS). Once the OpenCV package is
downloaded, run the WinZip self-extractor and select the location of
your choice. An opencv directory will be created; it is a good idea to
rename it in a way that will show which version you are using (for
example, in Windows, your final directory could be C:\opencv-3.2).
This directory will contain a collection of files and directories that
constitute the library. Notably, you will find the sources directory that
will contain all the source files (yes, it is open source!).

In order to complete the installation of the library and have it ready for
use, you need to take an important step: generate the binary files of the
library for the environment of your choice. This is indeed the point
where you have to make a decision on the target platform you wish to
use to create your OpenCV applications. Which operating system do
you prefer to use? Which compiler should you select? Which version?
32-bit or 64-bit? As you can see, there are many possible options, and

http://opencv.org/


this is why you have to build the library that fits your needs.

The Integrated Development Environment (IDE) you will use in your
project development will also guide you to make these choices. Note
that the library package also comes with precompiled binaries that you
can directly use if they correspond to your situation (check the build
directory adjacent to the sources directory). If one of the precompiled
binaries satisfies your requirements, then you are ready to go.

One important remark, however. Since version 3, OpenCV has been split
into two major components. The first one is the main OpenCV source
repository that includes the mature algorithms. This is the one you have
downloaded. A separate contribution repository also exists, and it
contains the new computer vision algorithm, recently added by the
OpenCV contributors. If your plan is to use only the core functions of
OpenCV, you do not need the contrib package. But if you want to play
with the latest state-of-the-art algorithms, then there is a good chance
that you will need this extra module. As a matter of fact, this cookbook
will show you how to use several of these advanced algorithms. You
therefore need the contrib modules to follow the recipes of this book.
So you have to go to https://github.com/opencv/opencv_contrib and
download OpenCV's extra modules (download the ZIP file). You can
unzip the extra modules into the directory of your choice; these modules
should be found at opencv_contrib-master/modules. For simplicity, you
can rename this directory as contrib and copy it directly inside the
sources directory of the main package. Note that you can also pick the
extra modules of your choice and only save them; however, you will
probably find it easier, at this point, to simply keep everything.

You are now ready to proceed with the installation. To build the
OpenCV binaries, it is highly suggested that you use the CMake tool,
available at http://cmake.org . CMake is another open source software
tool designed to control the compilation process of a software system
using platform-independent configuration files. It generates the required
makefile or solution files needed for compiling a software library in
your environment. Therefore, you have to download and install CMake.
Also see the There's more... section of this recipe for an additional

https://github.com/opencv/opencv_contrib
http://cmake.org


software package, the Visualization Toolkit (VTK), that you may want
to install before compiling the library.

You can run cmake using a command-line interface, but it is easier to use
CMake with its graphical interface (cmake-gui). In the latter case, all you
need to do is specify the folder containing the OpenCV library source
and the one that will contain the binaries. Now click on Configure and
select the compiler of your choice:

Once this initial configuration is completed, CMake will provide you
with a number of configuration options. You have to decide, for
example, whether you want to have the documentation installed or
whether you wish to have some additional libraries installed. Unless you



know what you are doing, it is probably better to leave the default
options as they are. However, since we want to include the extra
modules, we have to specify the directory where they can be found:

Once the extra module path is specified, click on Configure again. You
are now ready to generate the project files by clicking on the Generate
button. These files will allow you to compile the library. This is the last
step of the installation process, which will make the library ready to be
used in your development environment. For example, if you select MS
Visual Studio, then all you need to do is open the top-level solution file
that CMake has created for you (the OpenCV.sln file). You then select
the INSTALL project (under CMakeTargets) and issue the Build
command (use right-click).



To get both a Release and Debug build, you will have to repeat the
compilation process twice, one for each configuration. If everything
goes well, you will have an install directory (under build) created.
This directory will contain all the binary files of the OpenCV library to
be linked with your application as well as the dynamic library files that
your executables have to call at runtime. Make sure you set your
system's PATH environment variable (from Control Panel) such that



your operating system would be able to find the .dll files when you run
your applications (for example, C:\opencv-3.2\build
\install\x64\vc14\bin). You should also define the environment
variable, OPENCV_DIR pointing to the INSTALL directory. This way, CMake
will be able to find the library when configuring future projects.

In Linux environments, you can use Cmake to generate the required
Makefiles; you then complete the installation by executing a sudo make
install command. Alternatively, you could also use the packaging tool
apt-get which can automatically perform a complete installation of the
library. For Mac OS, you should use the Homebrew package manager.
Once installed, you just have to type brew install opencv3 --with-
contrib in order to have the complete library installed (run brew info
opencv3 to view all possible options). 

How it works...
OpenCV is a library that is in constant evolution. With version 3, the
library continues to expand offering a lot of new functionalities with
enhanced performances. The move to having a full C++ API, which was
initiated in version 2, is now almost complete, and more uniform
interfaces have been implemented. One of the major changes introduced
in this new version is the restructuring of the modules of the library in
order to facilitate its distribution. In particular, a separate repository
containing the most recent algorithms has been created. This contrib
repository also contains non-free algorithms that are subject to specific
licenses. The idea is for OpenCV to be able to offer state-of-the-art
functionalities that developers and researchers want to share while still
being able to offer a very stable and well-maintained core API. The
main modules are therefore the ones you get when you download the
library at http://opencv.org/. The extra modules must be downloaded
directly from the development repository hosted on GitHub (
https://github.com/opencv/ ). Since these extra modules are in constant
development, you should expect more frequent changes to the
algorithms they contain.

The OpenCV library is divided into several modules. For example, the

http://opencv.org/
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opencv_core module contains the core functionalities of the library; the
opencv_imgproc module includes the main image processing functions;
the opencv_highgui module offers the image and video reading and
writing functions along with some user interface functions; and so on. To
use a particular module, you have to include the corresponding top-level
header file. For instance, most applications that use OpenCV start with
the following declarations:

    #include <opencv2/core.hpp> 
    #include <opencv2/imgproc.hpp> 
    #include <opencv2/highgui.hpp> 

As you learn to work with OpenCV, you will discover more and more
functionalities available in its numerous modules.

There's more...
The OpenCV website at http://opencv.org/ contains detailed instructions
on how to install the library. It also contains complete online
documentation that includes several tutorials on the different
components of the library.

The Visualization Toolkit and the cv::viz module

In some applications, computer vision is used to reconstruct the 3D
information of a scene from images. When working with 3D data, it is
often useful to be able to visualize the results in some 3D virtual world.
As you will learn in Chapter 11 , Reconstructing 3D Scenes, the cv::viz
module offers many useful functions that allow you to visualize scene
objects and cameras in 3D. However, this module is built on top of
another open source library: VTK. Therefore, if you want to use the
cv::viz module, you need to install VTK on your machine before
compiling OpenCV.

VTK is available at http://www.vtk.org/. All you have to do is download
the library and use CMake in order to create the binaries for your
development environment. In this book, we used version 6.3.0. In
addition, you should define the VTK_DIR environment variable, pointing

http://opencv.org/
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to the directory containing the built files. Also, in the configuration
options proposed during the OpenCV installation process with CMake,
make sure that the WITH_VTK option is checked.

The OpenCV developer site

OpenCV is an open source project that welcomes user contributions.
The library is hosted on GitHub, a web service that offers version
control and source code management tools based on Git. You can access
the developer site at https://github.com/opencv/opencv/wiki . Among
other things, you can access the currently developed version of OpenCV.
The community uses Git as their version control system. Git is also a
free open source software system; it is probably the best tool you can
use to manage your own source code.

Note

Downloading the example source code of this book: The source code
files of the examples presented in this cookbook are also hosted on
GitHub. Please visit the author's repository at
https://github.com/laganiere to obtain the latest version of the code.
Note that you can download the example code files for all the Packt
books you have purchased from your account at
http://www.packtpub.com . If you have purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register yourselves
there to have the files e-mailed directly to you.

See also
The author's website (http://www.laganiere.name/) also presents
step-by-step instructions on how to install the latest versions of the
OpenCV library
Visit https://git-scm.com/ and https://github.com/ to learn more
about source code management.
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Loading, displaying, and saving
images
It is now time to run your first OpenCV application. Since OpenCV is
about processing images, this task will show you how to perform the
most fundamental operations needed in the development of imaging
applications. These are loading an input image from a file, displaying an
image on a window, applying a processing function, and saving the
output image.

Getting ready
Using your favorite IDE (for example, MS Visual Studio or Qt), create a
new console application with a main function that is ready to be filled.

How to do it...
The first thing to do is to include the header files, declaring the classes
and functions you wish to use. Here, we simply want to display an
image, so we need the core header that declares the image data structure
and the highgui header file that contains all the graphical interface
functions:

    #include <opencv2/core.hpp> 
    #include <opencv2/highgui.hpp> 

Our main function starts by declaring a variable that will hold the image.
Under OpenCV, this is done by defining an object of the cv::Mat class:

    cv::Mat image; // create an empty image 

This definition creates an image of size 0x0. This can be confirmed by
accessing the cv::Mat size attributes:

    std::cout << "This image is " << image.rows << " x "  
              << image.cols << std::endl; 



Next, a simple call to the reading function will read an image from a file,
decode it, and allocate the memory:

    image=  cv::imread("puppy.bmp"); // read an input image 

You are now ready to use this image. However, you should first check
whether the image has been correctly read (an error will occur if the file
is not found, is corrupted, or is not in a recognizable format). The
validity of the image is tested using the following code:

    if (image.empty()) {  // error handling 
      // no image has been created... 
      // possibly display an error message 
      // and quit the application  
      ... 
    } 

The empty method returns true if no image data has been allocated.

The first thing you might want to do with this image is display it. You
can do this using the functions of the highgui module. Start by declaring
the window on which you want to display the images, then specify the
image to be shown on this special window:

    // define the window (optional) 
    cv::namedWindow("Original Image"); 
    // show the image  
    cv::imshow("Original Image", image); 

As you can see, the window is identified by a name. You can reuse this
window to display another image later, or you can create multiple
windows with different names. When you run this application, you will
see an image window, as follows:



Now, you would normally apply some processing to the image. OpenCV
offers a wide selection of processing functions, and several of them are
explored in this book. Let's start with a very simple one that flips an
image horizontally. Several image transformations in OpenCV can be
performed in-place, meaning the transformation is applied directly on
the input image (no new image is created). This is the case for the
flipping method. However, we can always create another matrix to hold
the output result, and this is what we will do:

    cv::Mat result; // we create another empty image 
    cv::flip(image,result,1); // positive for horizontal 
                              // 0 for vertical, 
                              // negative for both 

The result is displayed on another window:

    cv::namedWindow("Output Image");    // the output window 
    cv::imshow("Output Image", result); 

Since it is a console window that will terminate when it reaches the end
of the main function, we add an extra highgui function to wait for a user
key before we end the program:



    cv::waitKey(0); // 0 to indefinitely wait for a key pressed  
                    // specifying a positive value will wait 
for 
                    // the given amount of msec 

You can then see that the output image is displayed in a distinct window,
as shown in the following screenshot:

Finally, you will probably want to save the processed image on your
disk. This is done using the following highgui function:

    cv::imwrite("output.bmp", result); // save result 

The file extension determines which codec will be used to save the
image. Other popular supported image formats are JPG, TIFF, and PNG.

How it works...
All classes and functions in the C++ API of OpenCV are defined within
the cv namespace. You have two ways to access them. First, precede the
main function's definition with the following declaration:



    using namespace cv; 

Alternatively, prefix all OpenCV class and function names with the
namespace specification, that is, cv::, as we will do in this book. The
use of this prefix makes the OpenCV classes and functions easier to
identify within your code.

The highgui module contains a set of functions that allow you to easily
visualize and interact with your images. When you load an image with
the imread function, you also have the option to read it as a gray-level
image. This is very advantageous since several computer vision
algorithms require gray-level images. Converting an input color image
on the fly as you read it will save you time and minimize your memory
usage. This can be done as follows:

    // read the input image as a gray-scale image 
    image=  cv::imread("puppy.bmp", cv::IMREAD_GRAYSCALE); 

This will produce an image made of unsigned bytes (unsigned char in
C++) that OpenCV designates with the constant CV_8U. Alternatively, it
is sometimes necessary to read an image as a three-channel color image
even if it has been saved as a gray-level image. This can be achieved by
calling the imread function with a positive second argument:

    // read the input image as a 3-channel color image 
    image=  cv::imread("puppy.bmp", cv::IMREAD_COLOR); 

This time, an image made of 3 bytes per pixel will be created and
designated as CV_8UC3 in OpenCV. Of course, if your input image has
been saved as a gray-level image, all three channels will contain the
same value. Finally, if you wish to read the image in the format in which
it has been saved, then simply input a negative value as the second
argument. The number of channels in an image can be checked using the
channels method:

    std::cout << "This image has "  
              << image.channels() << " channel(s)"; 

Pay attention when you open an image with imread without specifying a



full path (as we did here). In such a case, the default directory will be
used. When you run your application from the console, this directory is
obviously the current console's directory. However, if you run the
application directly from your IDE, the default directory will most often
be the one that contains your project file. Consequently, make sure that
your input image file is located in the right directory.

When you use imshow to display an image made up of integers
(designated as CV_16U for 16-bit unsigned integers or as CV_32S for 32-bit
signed integers), the pixel values of this image will be divided by 256
first. This is done in an attempt to make it displayable with 256 gray
shades. Similarly, an image made up of floating points will be displayed
by assuming a range of possible values between 0.0 (displayed as black)
and 1.0 (displayed as white). Values outside this defined range are
displayed in white (for values above 1.0) or black (for values below
0.0).

The highgui module is very useful to build quick prototypal
applications. When you are ready to produce a finalized version of your
application, you will probably want to use the GUI module offered by
your IDE in order to build an application with a more professional look.

Here, our application uses both input and output images. As an exercise,
you should rewrite this simple program such that it takes advantage of
the function's in-place processing, that is, by not declaring the output
image and writing it instead:

    cv::flip(image,image,1); // in-place processing 

There's more...
The highgui module contains a rich set of functions that help you
interact with your images. Using these, your applications can react to
mouse or key events. You can also draw shapes and write text on
images.

Clicking on images



You can program your mouse to perform specific operations when it is
over one of the image windows you created. This is done by defining an
appropriate callback function. A callback function is a function that you
do not explicitly call but which is called by your application in response
to specific events (here, the events that concern the mouse interacting
with an image window). To be recognized by applications, callback
functions need to have a specific signature and must be registered. In the
case of a mouse event handler, the callback function must have the
following signature:

    void onMouse( int event, int x, int y, int flags, void* 
param); 

The first parameter is an integer that is used to specify which type of
mouse event has triggered the call to the callback function. The other
two parameters are simply the pixel coordinates of the mouse location
when the event has occurred. The flags are used to determine which
button was pressed when the mouse event was triggered. Finally, the last
parameter is used to send an extra parameter to the function in the form
of a pointer to any object. This callback function can be registered in the
application through the following call:

    cv::setMouseCallback("Original Image", onMouse,  
                          reinterpret_cast<void*>(&image)); 

In this example, the onMouse function is associated with the image
window called Original Image, and the address of the displayed image
is passed as an extra parameter to the function. Now, if we define the
onMouse callback function as shown in the following code, then each
time the mouse is clicked, the value of the corresponding pixel will be
displayed on the console (here, we assume that it is a gray-level image):

    void onMouse( int event, int x, int y, int flags, void* 
param)  { 
 
      cv::Mat *im= reinterpret_cast<cv::Mat*>(param); 
 
      switch (event) {  // dispatch the event 
 
        case cv::EVENT_LBUTTONDOWN: // left mouse button down 



event 
 
          // display pixel value at (x,y) 
          std::cout << "at (" << x << "," << y << ") value is: 
"  
                    << static_cast<int>(               
                            im->at<uchar>(cv::Point(x,y))) << 
std::endl; 
          break; 
      } 
    } 

Note that in order to obtain the pixel value at (x,y), we used the at
method of the cv::Mat object; this is discussed in Chapter 2 ,
Manipulating Pixels. Other possible events that can be received by the
mouse event callback function include cv::EVENT_MOUSEMOVE,
cv::EVENT_LBUTTONUP, cv::EVENT_RBUTTONDOWN, and
cv::EVENT_RBUTTONUP.

Drawing on images

OpenCV also offers a few functions to draw shapes and write text on
images. The examples of basic shape-drawing functions are circle,
ellipse, line, and rectangle. The following is an example of how to
use the circle function:

    cv::circle(image,                // destination image  
               cv::Point(155,110),   // center coordinate 
               65,                   // radius   
               0,                    // color (here black) 
               3);                   // thickness 

The cv::Point structure is often used in OpenCV methods and functions
to specify a pixel coordinate. Note that here we assume that the drawing
is done on a gray-level image; this is why the color is specified with a
single integer. In the next recipe, you will learn how to specify a color
value in the case of color images that use the cv::Scalar structure. It is
also possible to write text on an image. This can be done as follows:

    cv::putText(image,                    // destination image 
                "This is a dog.",         // text 
                cv::Point(40,200),        // text position 



                cv::FONT_HERSHEY_PLAIN,   // font type 
                2.0,                      // font scale 
                255,                      // text color (here 
white) 
                2);                       // text thickness 

Calling these two functions on our test image will then result in the
following screenshot:

Note that you have to include the top-level module header
opencv2/imgproc.hpp for these examples to work.

See also
The cv::Mat class is the data structure that is used to hold your
images (and obviously, other matrix data). This data structure is at
the core of all OpenCV classes and functions; the next recipe offers
a detailed explanation of this data structure.



Exploring the cv::Mat data
structure
In the previous recipe, you were introduced to the cv::Mat data
structure. As mentioned, this is a key component of the library. It is used
to manipulate images and matrices (in fact, an image is a matrix from a
computational and mathematical point of view). Since you will be using
this data structure extensively in your application development
processes, it is imperative that you become familiar with it. Notably, in
this recipe, you will learn that this data structure incorporates an elegant
memory management mechanism.

How to do it...
Let's write the following test program that will allow us to test the
different properties of the cv::Mat data structure:

    #include <iostream> 
    #include <opencv2/core.hpp> 
    #include <opencv2/highgui.hpp> 
 
    // test function that creates an image 
    cv::Mat function() { 
       // create image 
       cv::Mat ima(500,500,CV_8U,50); 
       // return it 
       return ima; 
    } 
 
    int main() { 
      // create a new image made of 240 rows and 320 columns 
      cv::Mat image1(240,320,CV_8U,100); 
  
      cv::imshow("Image", image1); // show the image 
      cv::waitKey(0); // wait for a key pressed 
 
      // re-allocate a new image 
      image1.create(200,200,CV_8U); 
      image1= 200; 
 



      cv::imshow("Image", image1); // show the image 
      cv::waitKey(0); // wait for a key pressed 
 
      // create a red color image 
      // channel order is BGR 
      cv::Mat image2(240,320,CV_8UC3,cv::Scalar(0,0,255)); 
 
      // or: 
      // cv::Mat image2(cv::Size(320,240),CV_8UC3); 
      // image2= cv::Scalar(0,0,255); 
 
      cv::imshow("Image", image2); // show the image 
      cv::waitKey(0); // wait for a key pressed 
 
      // read an image 
      cv::Mat image3=  cv::imread("puppy.bmp");  
 
      // all these images point to the same data block 
      cv::Mat image4(image3); 
      image1= image3; 
 
      // these images are new copies of the source image 
      image3.copyTo(image2); 
      cv::Mat image5= image3.clone(); 
 
      // transform the image for testing 
      cv::flip(image3,image3,1);  
 
      // check which images have been affected by the 
processing 
      cv::imshow("Image 3", image3);  
      cv::imshow("Image 1", image1);  
      cv::imshow("Image 2", image2);  
      cv::imshow("Image 4", image4);  
      cv::imshow("Image 5", image5);  
      cv::waitKey(0); // wait for a key pressed 
   
 
      // get a gray-level image from a function 
      cv::Mat gray= function(); 
 
      cv::imshow("Image", gray); // show the image 
      cv::waitKey(0); // wait for a key pressed 
 
      // read the image in gray scale 
      image1= cv::imread("puppy.bmp", CV_LOAD_IMAGE_GRAYSCALE);   



      image1.convertTo(image2,CV_32F,1/255.0,0.0); 
 
      cv::imshow("Image", image2); // show the image 
      cv::waitKey(0); // wait for a key pressed 
 
      return 0; 
    } 

Run this program and take a look at the images it produces:

How it works...
The cv::Mat data structure is essentially made up of two parts: a header
and a data block. The header contains all of the information associated
with the matrix (size, number of channels, data type, and so on). The
previous recipe showed you how to access some of the attributes of this
structure contained in its header (for example, by using cols, rows, or
channels). The data block holds all the pixel values of an image. The
header contains a pointer variable that points to this data block; it is the
data attribute. An important property of the cv::Mat data structure is
the fact that the memory block is only copied when explicitly requested
for. Indeed, most operations will simply copy the cv::Mat header such



that multiple objects will point to the same data block. This memory
management model makes your applications more efficient while
avoiding memory leaks, but its consequences need to be understood.
The examples of this recipe illustrate this fact.

By default, the cv::Mat objects have a zero size when they are created,
but you can also specify an initial size as follows:

    // create a new image made of 240 rows and 320 columns 
    cv::Mat image1(240,320,CV_8U,100); 

In this case, you also need to specify the type of each matrix element-
CV_8U here, which corresponds to 1-byte pixel (grayscale) images. The U
letter here means it is unsigned. You can also declare signed numbers
using S. For a color image, you would specify three channels (CV_8UC3).
You can also declare integers (signed or unsigned) of size 16 and 32 (for
example, CV_16SC3). You also have access to 32-bit and 64-bit floating-
point numbers (for example, CV_32F).

Each element of an image (or a matrix) can be composed of more than
one value (for example, the three channels of a color image); therefore,
OpenCV has introduced a simple data structure that is used when pixel
values are passed to functions. This is the cv::Scalar structure, which is
generally used to hold one or three values. For example, to create a
color image initialized with red pixels, write the following code:

    // create a red color image 
    // channel order is BGR 
    cv::Mat image2(240,320,CV_8UC3,cv::Scalar(0,0,255)); 

Similarly, the initialization of the gray-level image could have also been
done using this structure by writing cv::Scalar(100).

The image size often needs to be passed to functions as well. We have
already mentioned that the cols and rows attributes can be used to get
the dimensions of a cv::Mat instance. The size information can also be
provided through the cv::Size structure that simply contains the height
and width of the matrix. The size() method allows you to obtain the
current matrix size. This is the format that is used in many methods



where a matrix size must be specified.

For example, an image could be created as follows:

    // create a non-initialized color image  
    cv::Mat image2(cv::Size(320,240),CV_8UC3); 

The data block of an image can always be allocated or reallocated using
the create method. When an image has already been previously
allocated, its old content is deallocated first. For reasons of efficiency, if
the new proposed size and type matches the already existing size and
type, then no new memory allocation is performed:

    // re-allocate a new image 
    // (only if size or type are different) 
    image1.create(200,200,CV_8U); 

When no more references point to a given cv::Mat object, the allocated
memory is automatically released. This is very convenient because it
avoids the common memory leak problems often associated with
dynamic memory allocation in C++. This is a key mechanism in
OpenCV (introduced in version 2) that is accomplished by having the
cv::Mat class implement reference counting and shallow copy.
Therefore, when an image is assigned to another one, the image data
(that is, the pixels) is not copied; both images will point to the same
memory block. This also applies to images either passed or returned by a
value. A reference count is kept such that the memory will be released
only when all the references to the image are destructed or assigned to
another image:

    // all these images point to the same data block 
    cv::Mat image4(image3); 
    image1= image3; 

Any transformation applied to one of the preceding images will also
affect the other images. If you wish to create a deep copy of the content
of an image, use the copyTo method. In this case, the create method is
called on the destination image. Another method that produces a copy of
an image is the clone method, which creates a new identical image as



follows:

    // these images are new copies of the source image 
    image3.copyTo(image2); 
    cv::Mat image5= image3.clone(); 

In the example of this recipe, we applied a transformation to image3.
The other images also contain this image; some of them share the same
image data, while others hold a copy of this image. Check the displayed
images and find out which ones were affected by the image3
transformation.

If you need to copy an image into another image that does not
necessarily have the same data type, use the convertTo method:

    // convert the image into a floating point image [0,1] 
    image1.convertTo(image2,CV_32F,1/255.0,0.0); 

In this example, the source image is copied into a floating-point image.
The method includes two optional parameters: a scaling factor and an
offset. Note that both the images must, however, have the same number
of channels.

The allocation model for the cv::Mat objects also allows you to safely
write functions (or class methods) that return an image:

    cv::Mat function() { 
 
      // create image 
      cv::Mat ima(240,320,CV_8U,cv::Scalar(100)); 
      // return it 
      return ima; 
   } 

We can also call this function from our main function as follows:

      // get a gray-level image 
      cv::Mat gray= function(); 

If we do this, the gray variable will then hold the image created by the
function without extra memory allocation. Indeed, as we explained, only



a shallow copy of the image will be transferred from the returned
cv::Mat instance to the gray image. When the ima local variable goes
out of scope, this variable is deallocated. However, since the associated
reference counter indicates that its internal image data is being referred
to by another instance (that is, the gray variable), its memory block is
not released.

It's worth noting that in the case of classes, you should be careful and
not return image class attributes. Here is an example of an error-prone
implementation:

    class Test { 
      // image attribute 
      cv::Mat ima; 
      public: 
        // constructor creating a gray-level image 
        Test() : ima(240,320,CV_8U,cv::Scalar(100)) {} 
 
        // method return a class attribute, not a good idea... 
        cv::Mat method() { return ima; } 
    }; 

Here, if a function calls the method of this class, it obtains a shallow
copy of the image attributes. If this copy is modified later, the class
attribute will also be surreptitiously modified, which can affect the
subsequent behavior of the class (and vice versa). This is a violation of
the important principle of encapsulation in object-oriented programming.
To avoid these kinds of errors, you should instead return a clone of the
attribute.

There's more...
When you are manipulating the cv::Mat class, you will discover that
OpenCV also includes several other related classes. It will be important
for you to become familiar with them.

The input and output arrays

If you look at the OpenCV documentation, you will see that many
methods and functions accept parameters of the cv::InputArray type as



an input. This type is a simple proxy class introduced to generalize the
concept of arrays in OpenCV and thus avoid the duplication of several
versions of the same method or function with different input parameter
types. It basically means that you can supply either a cv::Mat object or
other compatible types as an argument. Since it is declared as an input
array, you have the guarantee that your data structure will not be
modified by the function. It is interesting to know that cv::InputArray
can also be constructed from the popular std::vector class. This means
that such objects can be used as input parameters to OpenCV methods
and functions (however, never use this class inside your classes and
functions). Other compatible types are cv::Scalar and cv::Vec; the
latter structure will be presented in the next chapter. There is also a
cv::OutputArray proxy class that is used to designate parameters that
correspond to an image that is returned by a function or method.

Manipulating small matrices

When writing your applications, you might have to manipulate small
matrices. You can then use the cv::Matx template class and its
subclasses. For example, the following code declares a 3x3 matrix of
double-precision floating-point numbers and a 3-element vector. These
two are then multiplied together:

      // a 3x3 matrix of double 
      cv::Matx33d matrix(3.0, 2.0, 1.0, 
                         2.0, 1.0, 3.0, 
                         1.0, 2.0, 3.0); 
      // a 3x1 matrix (a vector) 
      cv::Matx31d vector(5.0, 1.0, 3.0); 
      // multiplication 
      cv::Matx31d result = matrix*vector; 

As you can see, the usual math operators can be applied to these
matrices.

See also
The complete OpenCV documentation can be found at
http://docs.opencv.org/
Chapter 2 , Manipulating Pixels, will show you how to efficiently

http://docs.opencv.org/


access and modify the pixel values of an image represented by the
cv::Mat class
The next recipe, Defining regions of interest , will explain how to
define a region of interest inside an image



Defining regions of interest
Sometimes, a processing function needs to be applied only to a portion
of an image. OpenCV incorporates an elegant and simple mechanism to
define a subregion in an image and manipulate it as a regular image. This
recipe will teach you how to define a region of interest inside an image.

Getting ready
Suppose we want to copy a small image onto a larger one. For example,
let's say we want to insert the following logo into our test image:

To do this, a Region Of Interest (ROI) can be defined over which the
copy operation can be applied. As we will see, the position of the ROI
will determine where the logo will be inserted in the image.

How to do it...
The first step consists of defining the ROI. Once defined, the ROI can
be manipulated as a regular cv::Mat instance. The key is that the ROI is
indeed a cv::Mat object that points to the same data buffer as its parent
image and has a header that specifies the coordinates of the ROI.
Inserting the logo is then accomplished as follows:

    // define image ROI at image bottom-right 
    cv::Mat imageROI(image,  
              cv::Rect(image.cols-logo.cols,   // ROI 
coordinates 
                       image.rows-logo.rows, 
                       logo.cols,logo.rows));  // ROI size 
 
    // insert logo 
    logo.copyTo(imageROI); 



Here, image is the destination image and logo is the logo image (of a
smaller size). The following image is then obtained by executing the
previous code:

How it works...
One way to define an ROI is to use a cv::Rect instance. As the name
indicates, it describes a rectangular region by specifying the position of
the upper-left corner (the first two parameters of the constructor) and
the size of the rectangle (the width and height are given in the last two
parameters). In our example, we used the size of the image and the size
of the logo in order to determine the position where the logo would
cover the bottom-right corner of the image. Obviously, the ROI should
always be completely inside the parent image.

The ROI can also be described using row and column ranges. A range is
a continuous sequence from a start index to an end index (excluding
both). The cv::Range structure is used to represent this concept.
Therefore, an ROI can be defined from two ranges; in our example, the
ROI could have been equivalently defined as follows:



    imageROI= image(cv::Range(image.rows-logo.rows,image.rows),   
                    cv::Range(image.cols-
logo.cols,image.cols)); 

In this case, the operator() function of cv ::Mat returns another
cv::Mat instance that can then be used in subsequent calls. Any
transformation of the ROI will affect the original image in the
corresponding area because the image and the ROI share the same
image data. Since the definition of an ROI does not include the copying
of data, it is executed in a constant amount of time, no matter the size of
the ROI.

If you want to define an ROI made up of some lines of an image, the
following call can be used:

    cv::Mat imageROI= image.rowRange(start,end); 

Similarly, for an ROI made up of some image columns, the following can
be used:

    cv::Mat imageROI= image.colRange(start,end); 

There's more...
The OpenCV methods and functions include many optional parameters
that are not discussed in the recipes of this book. When you wish to use
a function for the first time, you should always take the time to look at
the documentation to learn more about the possible options that the
function offers. One very common option is the possibility to define
image masks.

Using image masks

Some OpenCV operations allow you to define a mask that will limit the
applicability of a given function or method, which is normally supposed
to operate on all the image pixels. A mask is an 8-bit image that should
be nonzero at all locations where you want an operation to be applied.
At the pixel locations that correspond to the zero values of the mask, the
image is untouched. For example, the copyTo method can be called with



a mask. We can use it here to copy only the white portion of the logo
shown previously, as follows:

    // define image ROI at image bottom-right 
    imageROI= image(cv::Rect(image.cols-logo.cols, 
                             image.rows-logo.rows, 
                             logo.cols,logo.rows)); 
    // use the logo as a mask (must be gray-level) 
    cv::Mat mask(logo); 
 
    // insert by copying only at locations of non-zero mask 
    logo.copyTo(imageROI,mask); 

The following image is obtained by executing the previous code:

The background of our logo was black (therefore, it had the value 0);
this is why it was easy to use it as both the copied image and the mask.
Of course, you can define the mask of your choice in your application;
most OpenCV pixel-based operations give you the opportunity to use
masks.

See also



The row and col methods will be used in the Scanning an image
with neighbor access recipe of Chapter 2 , Manipulating Pixels.
These are a special case of the rowRange and colRange methods in
which the start and end indexes are equal in order to define a single-
line or single-column ROI.



Chapter 2. Manipulating Pixels
In this chapter, we will cover the following recipes:

Accessing pixel values
Scanning an image with pointers
Scanning an image with iterators
Writing efficient image-scanning loops
Scanning an image with neighbor access
Performing simple image arithmetic
Remapping an image

Introduction
In order to build computer vision applications, you need to be able to
access the image content and eventually modify or create images. This
chapter will teach you how to manipulate the picture elements (also
known as pixels). You will learn how to scan an image and process each
of its pixels. You will also learn how to do this efficiently, since even
images of modest dimensions can contain hundreds of thousands of
pixels.

Fundamentally, an image is a matrix of numerical values. This is why, as
we learned in Chapter 1 , Playing with Images, OpenCV manipulates
them using the cv::Mat data structure. Each element of the matrix
represents one pixel. For a gray-level image (a black-and-white image),
pixels are unsigned 8-bit values (that is, of type unsigned char) where 0
corresponds to black and 255 corresponds to white.

In the case of color images, three primary color values are required in
order to reproduce the different visible colors. This is a consequence of
the fact that our human visual system is trichromatic; three types of
cone cells on our retinae convey the color information to our brain. This
means that for a color image, three values must be associated to each
pixel. In photography and digital imaging, the commonly used primary
color channels are red, green, and blue. A matrix element is, therefore,



made of a triplet of 8-bit values in this case. Note that even if 8-bit
channels are generally sufficient, there are specialized applications
where 16-bit channels are required (medical imaging, for example).

As we saw in the previous chapter, OpenCV also allows you to create
matrices (or images) with pixel values of other types, for example,
integer (CV_32U or CV_32S) and floating point (CV_32F) numbers. These
are very useful to store, for example, intermediate values in some image-
processing tasks. Most operations can be applied on matrices of any
type; others require a specific type or work only with a given number of
channels. Therefore, a good understanding of a function's precondition is
essential in order to avoid common programming errors.

Throughout this chapter, we use the following color image as the input
(refer to the book's graphics PDF or to the book's website to view this
image in color):



Accessing pixel values
In order to access each individual element of a matrix, you just need to
specify its row and column numbers. The corresponding element, which
can be a single numerical value or a vector of values in the case of a
multi-channel image, will be returned.

Getting ready
To illustrate the direct access to pixel values, we will create a simple
function that adds salt-and-pepper noise to an image. As the name
suggests, salt-and-pepper noise is a particular type of noise in which
some randomly selected pixels are replaced by a white or a black pixel.
This type of noise can occur in faulty communications when the value of
some pixels is lost during the transmission. In our case, we will simply
randomly select a few pixels and assign them a white color.

How to do it...
We create a function that receives an input image. This is the image that
will be modified by our function. The second parameter is the number of
pixels on which we want to overwrite white values:

    void salt(cv::Mat image, int n) { 
 
      // C++11 random number generator 
      std::default_random_engine generator; 
      std::uniform_int_distribution<int>  
                   randomRow(0, image.rows - 1); 
      std::uniform_int_distribution<int>  
                   randomCol(0, image.cols - 1); 
 
      int i,j; 
      for (int k=0; k<n; k++) { 
 
        // random image coordinate 
        i= randomCol(generator); 
        j= randomRow(generator); 
  
        if (image.type() == CV_8UC1) { // gray-level image 



 
          // single-channel 8-bit image 
          image.at<uchar>(j,i)= 255;  
  
        } else if (image.type() == CV_8UC3) { // color image 
 
          // 3-channel image 
          image.at<cv::Vec3b>(j,i)[0]= 255;  
          image.at<cv::Vec3b>(j,i)[1]= 255;  
          image.at<cv::Vec3b>(j,i)[2]= 255;  
        } 
      } 
    } 

The preceding function is made of a single loop that assigns n times the
value 255 to randomly selected pixels. Here, the pixel column i and row
j are selected using a random number generator. Note that using the
type method, we distinguish the two cases of gray-level and color
images. In the case of a gray-level image, the number 255 is assigned to
the single 8-bit value. For a color image, you need to assign 255 to the
three primary color channels in order to obtain a white pixel.

You can call this function by passing it an image you have previously
opened. Refer to the following code:

      // open the image 
      cv::Mat image= cv::imread("boldt.jpg",1); 
   
      // call function to add noise 
      salt(image,3000); 
 
      // display result 
      cv::namedWindow("Image"); 
      cv::imshow("Image",image); 

The resulting image will look as follows:



How it works...
The cv::Mat class includes several methods to access the different
attributes of an image. The public member variables, cols and rows, give
you the number of columns and rows in the image. For element access,
cv::Mat has the at (int y, int x) method, in which x is the column
number and y is the row number. However, the type returned by a
method must be known at compile time, and since cv::Mat can hold
elements of any type, the programmer needs to specify the return type
that is expected. This is why the at method has been implemented as a
template method. So, when you call it, you must specify the image
element type as follows:

         image.at<uchar>(j,i)= 255; 

It is important to note that it is the programmer's responsibility to make
sure that the type specified matches the type contained in the matrix.
The at method does not perform any type conversion.



In color images, each pixel is associated with three components: the red,
green, and blue channels. Therefore, a cv::Mat class that contains a
color image will return a vector of three 8-bit values. OpenCV has
defined a type for such short vectors, and it is called cv::Vec3b. This is a
vector of three unsigned characters. This explains why the element
access to the pixels of a color pixel is written as follows:

    image.at<cv::Vec3b>(j,i)[channel]= value; 

The channel index designates one of the three color channels. OpenCV
stores the channel values in the order blue, green, and red (blue is,
therefore, channel 0). You can also use the short vector data structure
directly and write:

    image.at<cv::Vec3b>(j, i) = cv::Vec3b(255, 255, 255); 

Similar vector types also exist for 2-element and 4-element vectors
(cv::Vec2b and cv::Vec4b) as well as for other element types. For
example, for a 2-element float vector, the last letter of the type name
would be replaced by an f, that is, cv::Vec2f. In the case of a short
integer, the last letter is replaced with s. This letter is an i for an integer,
and a d for a double precision floating point vector. All of these types
are defined using the cv::Vec<T,N> template class, where T is the type
and N is the number of vector elements.

As a last note, you might have been surprised by the fact that our image-
modifying function uses a pass-by-value image parameter. This works
because when images are copied, they still share the same image data.
So, you do not necessarily have to transmit images by references when
you want to modify their content. Incidentally, pass-by-value parameters
often make code optimization easier for the compiler.

There's more...
The cv::Mat class has been made generic by defining it using C++
templates.

The cv::Mat_ template class



Using the at method of the cv::Mat class can sometimes be cumbersome
because the returned type must be specified as a template argument in
each call. In cases where the matrix type is known, it is possible to use
the cv::Mat_ class, which is a template subclass of cv::Mat. This class
defines a few extra methods but no new data attributes so that pointers
or references to one class can be directly converted to another class.
Among the extra methods, there is operator(), which allows direct
access to matrix elements. Therefore, if image is a cv::Mat variable that
corresponds to a uchar matrix, then you can write the following code:

    // use image with a Mat_ template 
    cv::Mat_<uchar> img(image); 
    img(50,100)= 0; // access to row 50 and column 100 

Since the type of the cv::Mat_ elements is declared when the variable is
created, the operator() method knows at compile time which type is to
be returned. Other than the fact that it is shorter to write, using the
operator() method provides exactly the same result as the at method.

See also
The There's more... section of the Scanning an image with pointers
recipe explains how to create a function with input and output
parameters
The Writing efficient image-scanning loops recipe proposes a
discussion on the efficiency of the at method



Scanning an image with pointers
In most image-processing tasks, you need to scan all pixels of the image
in order to perform a computation. Considering the large number of
pixels that will need to be visited, it is essential that you perform this
task in an efficient way. This recipe, and the next one, will show you
different ways of implementing efficient scanning loops. This recipe uses
the pointer arithmetic.

Getting ready
We will illustrate the image-scanning process by accomplishing a simple
task: reducing the number of colors in an image.

Color images are composed of 3-channel pixels. Each of these channels
corresponds to the intensity value of one of the three primary colors,
red, green, and blue. Since each of these values is an 8-bit unsigned
character, the total number of colors is 256x256x256, which is more than
16 million colors. Consequently, to reduce the complexity of an analysis,
it is sometimes useful to reduce the number of colors in an image. One
way to achieve this goal is to simply subdivide the RGB space into
cubes of equal sizes. For example, if you reduce the number of colors in
each dimension by 8, then you would obtain a total of 32x32x32 colors.
Each color in the original image is then assigned a new color value in the
color-reduced image that corresponds to the value in the center of the
cube to which it belongs.

Therefore, the basic color reduction algorithm is simple. If N is the
reduction factor, divide by N the value of each pixel (integer division is
assumed here, therefore, the reminder is lost) then multiply the result by
N. This will give you the multiple of N just below the input pixel value.
Add N/2 and you obtain the central position of the interval between two
adjacent multiples of N. If you repeat this process for each 8-bit channel
value, then you will obtain a total of 256/N x 256/N x 256/N possible
color values.



How to do it...
The signature of our color reduction function will be as follows:

    void colorReduce(cv::Mat image, int div=64); 

The user provides an image and the per-channel reduction factor. Here,
the processing is done in-place, that is, the pixel values of the input
image are modified by the function. See the There's more... section of
this recipe for a more general function signature with input and output
arguments.

The processing is simply done by creating a double loop that goes over
all pixel values as follows:

    void colorReduce(cv::Mat image, int div=64) { 
 
      int nl= image.rows; // number of lines 
      // total number of elements per line 
      int nc= image.cols * image.channels();  
              
      for (int j=0; j<nl; j++) { 
 
        // get the address of row j 
        uchar* data= image.ptr<uchar>(j); 
 
        for (int i=0; i<nc; i++) { 
 
          // process each pixel --------------------- 
 
          data[i]= data[i]/div*div + div/2; 
 
          // end of pixel processing ---------------- 
    
        } // end of line 
      } 
    } 

This function can be tested using the following code snippet:

    // read the image 
    image= cv::imread("boldt.jpg"); 
    // process the image 



    colorReduce(image,64); 
    // display the image 
    cv::namedWindow("Image"); 
    cv::imshow("Image",image); 

This will give you, for example, the following image:

How it works...
In a color image, the first three bytes of the image data buffer are the 3
channel values of the upper-left pixel, the next three bytes are the values
of the second pixel of the first row, and so on (remember that OpenCV
uses, by default, the BGR channel order). An image of width W and
height H would then require a memory block of WxHx3 uchars. However,
for efficiency reasons, the length of a row can be padded with a few
extra pixels. This is because image processing can sometimes be made
more efficient when rows are multiples of 8 for example; this way they
better align with the local memory configuration. Obviously, these extra
pixels are not displayed or saved; their exact values are ignored.



OpenCV designates the length of a padded row as the effective width.
Obviously, if the image has not been padded with extra pixels, the
effective width will be equal to the real image width. We have already
learned that the cols and rows attributes give you the image's width and
height; similarly, the step data attribute gives you the effective width in
number of bytes. Even if your image is of a type other than uchar, the
step data will still give you the number of bytes in a row. The size of a
pixel element is given by the elemSize method (for example, for a 3-
channel short integer matrix (CV_16SC3), elemSize will return 6). Recall
that the number of channels in the image is given by the nchannels
method (which will be 1 for a gray-level image and 3 for a color image).
Finally, the total method returns the total number of pixels (that is, the
matrix entries) in the matrix.

The number of pixel values per row is then given by the following code:

    int nc= image.cols * image.channels(); 

To simplify the computation of the pointer arithmetic, the cv::Mat class
offers a method that directly gives you the starting address of an image
row. This is the ptr method. It is a template method that returns the
address of row number j:

    uchar* data= image.ptr<uchar>(j); 

Note that in the processing statement, we could have equivalently used
the pointer arithmetic to move from column to column. So, we could
have written the following code:

    *data++= *data/div*div + div2;  

There's more...
The color reduction function presented in this recipe provides just one
way of accomplishing this task. You could also use other color reduction
formulas. A more general version of the function would also allow the
specification of distinct input and output images. The image scanning
can also be made more efficient by taking into account the continuity of



the image data. Finally, it is also possible to use regular low-level pointer
arithmetic to scan the image buffer. All of these elements are discussed
in the following subsections.

Other color reduction formulas

In our example, color reduction is achieved by taking advantage of
integer division that floors the division result to the nearest lower integer
as follows:

    data[i]= (data[i]/div)*div + div/2; 

The reduced color could have also been computed from the modulo
operator using which we can obtain the multiple of div immediately
below as follows:

    data[i]= data[i] - data[i]%div + div/2; 

Another option would be to use bitwise operators. Indeed, if we restrict
the reduction factor to a power of 2, that is, div=pow(2,n), then masking
the first n bits of the pixel value would give us the nearest lower multiple
of div. This mask would be computed by a simple bit shift as follows:

    // mask used to round the pixel value 
    uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0 

The color reduction would be given by the following code:

    *data &= mask;      // masking 
    *data++ += div>>1;  // add div/2;  
    // bitwise OR could also be used above instead of + 

In general, bitwise operations might lead to very efficient code, so they
could constitute a powerful alternative when efficiency is a requirement.

Having input and output arguments

In our color reduction example, the transformation is directly applied to
the input image, which is called an in-place transformation. This way, no
extra image is required to hold the output result, which could save on
the memory usage when this is a concern. However, in some



applications, the user might want to keep the original image intact. The
user would then be forced to create a copy of the image before calling
the function. Note that the easiest way to create an identical deep copy
of an image is to call the clone() method; for example, take a look at
the following code:

    // read the image 
    image= cv::imread("boldt.jpg"); 
    // clone the image 
    cv::Mat imageClone= image.clone(); 
    // process the clone 
    // orginal image remains untouched 
    colorReduce(imageClone); 
    // display the image result 
    cv::namedWindow("Image Result"); 
    cv::imshow("Image Result",imageClone); 

This extra overhead can be avoided by defining a function that gives the
user the option to either use or not use in-place processing. The
signature of the method would then be as follows:

  void colorReduce(const cv::Mat &image, // input image  
                   cv::Mat &result,      // output image 
                   int div=64); 

Note that the input image is now passed as a const reference, which
means that this image will not be modified by the function. The output
image is passed as a reference such that the calling function will see the
output argument modified by this call. When in-place processing is
preferred, the same image is specified as the input and output:

    colorReduce(image,image); 

If not, another cv::Mat instance can be provided:

    cv::Mat result;    
    colorReduce(image,result); 

The key here is to first verify whether the output image has an allocated
data buffer with a size and pixel type that matches the one of the input
image. Very conveniently, this check is encapsulated inside the create



method of cv::Mat. This is the method that is to be used when a matrix
must be reallocated with a new size and type. If, by chance, the matrix
already has the size and type specified, then no operation is performed
and the method simply returns without touching the instance.

Therefore, our function should simply start with a call to create that
builds a matrix (if necessary) of the same size and type as the input
image:

    result.create(image.rows,image.cols,image.type()); 

The allocated memory block has a size of total()*elemSize(). The
scanning is then done with two pointers:

    for (int j=0; j<nl; j++) { 
 
      // get the addresses of input and output row j 
      const uchar* data_in= image.ptr<uchar>(j); 
      uchar* data_out= result.ptr<uchar>(j); 
 
      for (int i=0; i<nc*nchannels; i++) { 
 
        // process each pixel --------------------- 
 
        data_out[i]= data_in[i]/div*div + div/2; 
 
        // end of pixel processing ---------------- 
 
      } // end of line 
    } 

In cases where the same image is provided as the input and output, this
function becomes completely equivalent to the first version presented in
this recipe. If another image is provided as the output, the function will
work correctly, irrespective of whether the image has or has not been
allocated prior to the function call.

Finally, note that the two parameters of this new function could have
been declared as cv::InputArray and cv::OutputArray. As discussed in
Chapter 1 , Playing with Images, these would provide the same behavior
but bring extra flexibility in terms of the argument type they can accept.



Efficient scanning of continuous images

We previously explained that, for efficiency reasons, an image can be
padded with extra pixels at the end of each row. However, it is
interesting to note that when the image is unpadded, it can also be seen
as a long one-dimensional array of WxH pixels. A convenient cv::Mat
method can tell us whether the image has been padded or not. This is the
isContinuous method that returns true if the image does not include
padded pixels. Note that we could also check the continuity of the
matrix by writing the following test:

    // check if size of a line (in bytes) 
    // equals the number of columns times pixel size in bytes 
    image.step == image.cols*image.elemSize(); 

To be complete, this test should also check whether the matrix has only
one line; in which case, it is continuous by definition. Nevertheless,
always use the isContinuous method to test the continuity condition. In
some specific processing algorithms, you can take advantage of the
continuity of the image by processing it in one single (longer) loop. Our
processing function would then be written as follows:

    void colorReduce(cv::Mat image, int div=64) { 
 
      int nl= image.rows; // number of lines 
      // total number of elements per line 
      int nc= image.cols * image.channels();  
 
      if (image.isContinuous())  { 
        // then no padded pixels 
        nc= nc*nl; 
        nl= 1;  // it is now a 1D array 
      } 
   
        int n= staic_cast<int>( 
          log(static_cast<double>(div))/log(2.0) + 0.5); 
        // mask used to round the pixel value 
        uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0 
        uchar div2 = div >> 1; // div2 = div/2 
 
        // this loop is executed only once 
        // in case of continuous images 



        for (int j=0; j<nl; j++) { 
 
          uchar* data= image.ptr<uchar>(j); 
 
          for (int i=0; i<nc; i++) { 
 
            *data &= mask; 
            *data++ += div2; 
          } // end of line 
        } 
    } 

Now, when the continuity test tells us that the image does not contain
padded pixels, we eliminate the outer loop by setting the width to 1 and
the height to WxH. Note that there is also a reshape method that could
have been used here. You would write the following in this case:

      if (image.isContinuous())  
      { 
        // no padded pixels 
        image.reshape(1,   // new number of channels 
                      1);  // new number of rows 
      } 
 
      int nl= image.rows; // number of lines 
      int nc= image.cols * image.channels();  

The reshape() method changes the matrix dimensions without requiring
any memory copying or reallocation. The first parameter is the new
number of channels and the second one is the new number of rows. The
number of columns is readjusted accordingly.

In these implementations, the inner loop processes all image pixels in a
sequence.

Low-level pointer arithmetic

In the cv::Mat class, the image data is contained in a memory block of
unsigned chars. The address of the first element of this memory block is
given by the data attribute that returns an unsigned char pointer. So, to
start your loop at the beginning of the image, you could have written the
following code:



    uchar *data= image.data; 

And moving from one row to the next could have been done by moving
your row pointer using the effective width as follows:

    data+= image.step;  // next line 

The step attribute gives you the total number of bytes (including the
padded pixels) in a line. In general, you can obtain the address of the
pixel at row j and column i as follows:

    // address of pixel at (j,i) that is &image.at(j,i)      
    data= image.data+j*image.step+i*image.elemSize();     

However, even if this would work in our example, it is not
recommended that you proceed this way.

See also
The Writing efficient image-scanning loops recipe in this chapter
proposes a discussion on the efficiency of the scanning methods
presented here
The Exploring the cv::Mat data structure recipe in Chapter 1 ,
Playing with Images contains more information on the attributes
and methods of the cv::Mat class. It also discusses the related
classes such as the cv::InputArray and cv::OutputArray classes.



Scanning an image with iterators
In object-oriented programming, looping over a data collection is usually
done using iterators. Iterators are specialized classes that are built to go
over each element of a collection, hiding how the iteration over each
element is specifically done for a given collection. This application of
the information-hiding principle makes scanning a collection easier and
safer. In addition, it makes it similar in form no matter what type of
collection is used. The Standard Template Library (STL) has an
iterator class associated with each of its collection classes. OpenCV then
offers a cv::Mat iterator class that is compatible with the standard
iterators found in the C++ STL.

Getting ready
In this recipe, we again use the color reduction example described in the
previous recipe.

How to do it...
An iterator object for a cv::Mat instance can be obtained by first
creating a cv::MatIterator_ object. As is the case with cv::Mat_, the
underscore indicates that this is a template subclass. Indeed, since image
iterators are used to access the image elements, the return type must be
known at the time of compilation. The iterator for a color image is then
declared as follows:

      cv::MatIterator_<cv::Vec3b> it; 

Alternatively, you can also use the iterator type defined inside the Mat_
template class as follows:

     cv::Mat_<cv::Vec3b>::iterator it; 

You then loop over the pixels using the usual begin and end iterator
methods, except that these ones are, again, template methods.
Consequently, our color reduction function is now written as follows:



    void colorReduce(cv::Mat image, int div=64) { 
  
      // div must be a power of 2 
      int n= staic_cast<int>( 
    log(static_cast<double>(div))/log(2.0) + 0.5); 
      // mask used to round the pixel value 
      uchar mask= 0xFF<<n; // e.g. for div=16, mask= 0xF0 
      uchar div2 = div >> 1; // div2 = div/2 
   
      // get iterators 
      cv::Mat_<cv::Vec3b>::iterator it= image.begin<cv::Vec3b>
(); 
      cv::Mat_<cv::Vec3b>::iterator itend= image.end<cv::Vec3b>
(); 
 
      // scan all pixels 
      for ( ; it!= itend; ++it) { 
 
        (*it)[0]&= mask; 
        (*it)[0]+= div2; 
        (*it)[1]&= mask; 
        (*it)[1]+= div2; 
        (*it)[2]&= mask; 
        (*it)[2]+= div2; 
      } 
    } 

Remember that the iterator here returns a cv::Vec3b instance because
we are processing a color image. Each color channel element is accessed
using the dereferencing operator []. Note that you could also rely on the
cv::Vec3b overloaded operators and simply write:

      *it= *it/div*div+offset; 

This will apply the operations on each element of the short vector.

How it works...
Working with iterators always follows the same pattern no matter what
kind of collection is scanned.

First, you create your iterator object using the appropriate specialized
class, which in our example is cv::Mat_<cv::Vec3b>::iterator (or



cv::MatIterator_<cv::Vec3b>).

You then obtain an iterator initialized at the starting position (in our
example, the upper-left corner of the image). This is done using a begin
method. With a cv::Mat instance of a color image, you obtain it as
image.begin<cv::Vec3b>(). You can also use arithmetic on the iterator.
For example, if you wish to start at the second row of an image, you can
initialize your cv::Mat iterator at image.begin<cv::Vec3b>
()+image.cols. The end position of your collection is obtained similarly
but using the end method. However, the iterator thus obtained is just
outside your collection. This is why your iterative process must stop
when it reaches the end position. You can also use arithmetic on this
iterator; for example, if you wish to stop before the last row, your final
iteration would stop when the iterator reaches image.end<cv::Vec3b>
()-image.cols.

Once your iterator is initialized, you create a loop that goes over all
elements until the end is reached. A typical while loop will look like the
following code:

    while (it!= itend) {  
 
      // process each pixel --------------------- 
 
      ... 
 
      // end of pixel processing ---------------- 
 
      ++it; 
    } 

The ++ operator is the one that is to be used to move to the next
element. You can also specify a larger step size. For example, it+=10
would process the image every 10 pixels.

Finally, inside the processing loop, you use the dereferencing operator*
in order to access the current element, using which, you can read (for
example, element= *it;) or write (for example, *it= element;). Note
that it is also possible to create constant iterators that you use if you



receive a reference to const cv::Mat or if you wish to signify that the
current loop does not modify the cv::Mat instance. These are declared
as follows:

    cv::MatConstIterator_<cv::Vec3b> it; 

Or, they can be declared as follows:

    cv::Mat_<cv::Vec3b>::const_iterator it; 

There's more...
In this recipe, the start and end positions of the iterator were obtained
using the begin and end template methods. As we did in the first recipe
of this chapter, we could have also obtained them using a reference to a
cv::Mat_ instance. This would avoid the need to specify the iterator type
in the begin and end methods since this one is specified when the
cv::Mat_ reference is created.

    cv::Mat_<cv::Vec3b> cimage(image); 
    cv::Mat_<cv::Vec3b>::iterator it= cimage.begin(); 
    cv::Mat_<cv::Vec3b>::iterator itend= cimage.end(); 

See also
The Writing efficient image-scanning loops recipe proposes a
discussion on the efficiency of iterators when scanning an image.
Also, if you are not familiar with the concept of iterators in object-
oriented programming and how they are implemented in ANSI C++,
you should read a tutorial on STL iterators. Simply search the Web
with the keywords STL Iterator and you will find numerous
references on the subject.



Writing efficient image-scanning
loops
In the previous recipes of this chapter, we presented different ways of
scanning an image in order to process its pixels. In this recipe, we will
compare the efficiency of these different approaches.

When you write an image-processing function, efficiency is often a
concern. When you design your function, you will frequently need to
check the computational efficiency of your code in order to detect any
bottleneck in your processing that might slow down your program.

However, it is important to note that unless necessary, optimization
should not be done at the price of reducing code clarity. Simple code is
indeed, always easier to debug and maintain. Only code portions that are
critical to a program's efficiency should be heavily optimized.

How to do it...
In order to measure the execution time of a function or a portion of
code, there exists a very convenient OpenCV function called
cv::getTickCount(). This function gives you the number of clock
cycles that have occurred since the last time you started your computer.
Since we want to evaluate the execution time, the idea is to get this
number of clock cycles before and after the execution of some code. To
get the execution time in seconds, we use another method,
cv::getTickFrequency(). This gives us the number of cycles per
second, assuming your CPU has a fixed frequency (which is not
necessarily the case for more recent processors). The usual pattern to be
used in order to obtain the computational time of a given function (or
portion of code) would then be as follows:

    const int64 start = cv::getTickCount(); 
    colorReduce(image); // a function call 
    // elapsed time in seconds 
    double duration = (cv::getTickCount()-start)/ 



                               cv::getTickFrequency(); 

How it works...
The execution times of the different implementations of the colorReduce
function from this chapter are reported here. The absolute runtime
numbers would differ from one machine to another (here, we used a
2.40 GHz machine equipped with a 64-bit Intel Core i7). It is rather
interesting to look at their relative difference. These results are also
dependent on the specific compiler that is used to produce the
executable file. Our tests report the average time to reduce the colors of
our test image that has a resolution of 320x240 pixels. We performed
these tests on three different configurations:
1. A 2.5 GHz machine equipped with a 64-bit Intel i5 and the Visual

Studio 14 2015 compiler under Windows 10
2. A 3.6 GHz machine 64-bit Intel i7 and gcc 4.9.2 under Ubuntu

Linux
3. A 2011 MacBook Pro 2.3 GHz Intel i5 and clang++ 7.0.2

First, we compare the three ways of computing the color reduction as
presented in the There's more... section of the Scanning an image with
pointers recipe.

Configuration 1 Configuration 2 Configuration 3

Integer division 0.867 ms 0.586 ms 1.119 ms

Modulo operator 0.774 ms 0.527 ms 1.106 ms

Bitwise operator 0.015 ms 0.013 ms 0.066 ms

It is interesting to observe that the formula that uses the bitwise operator
is much faster than the others. The other two methods have similar
running times. It is therefore important to take the time to identify the
most efficient way of computing a result in an image loop, as the net
impact can be very significant.



In a loop, you should avoid repetitive computations of values that could
be precomputed instead. This consumes time, obviously. For example, it
would be a bad idea to write the inner of our color reduction function as
follows:

    for (int i=0; i<image.cols * image.channels(); i++) { 
      *data &= mask; 
      *data++ += div/2; 

Indeed, in this preceding code, the loop needs to compute the total
number of elements in a line and the div/2 result again and again. A
better code is then the following:

    int nc= image.cols * image.channels(); 
    uchar div2= div>>1;  
 
    for (int i=0; i<nc; i++) { 
      *(data+i) &= mask; 
      *(data+i) += div2; 

On average, the code with re-computations is 10 times slower than the
more optimal solution. Note, however, that some compilers might be
able to optimize these kinds of loops and still obtain efficient code.

The version of the color reduction function that uses iterators (and
bitwise operators), as shown in the Scanning an image with iterators
recipe, gives slower results at 0.480 ms, 0.320 ms, and 0.655 ms for our
three configurations. The main objective of iterators is to simplify the
image-scanning process and make it less prone to errors.

For completeness, we also implemented a version of the function that
uses the at method for pixel access. The main loop of this
implementation would then simply read as follows:

    for (int j=0; j<nl; j++) { 
      for (int i=0; i<nc; i++) { 
  
        image.at<cv::Vec3b>(j,i)[0]= 
               image.at<cv::Vec3b>(j,i)[0]/div*div + div/2; 
        image.at<cv::Vec3b>(j,i)[1]=     
              image.at<cv::Vec3b>(j,i)[1]/div*div + div/2; 



        image.at<cv::Vec3b>(j,i)[2]=     
              image.at<cv::Vec3b>(j,i)[2]/div*div + div/2; 
 
      } // end of line 
    } 

This implementation has a slower runtime of 0.925 ms, 0.580 ms, and
1.128 ms. This method should then be used only for the random access
of image pixels but never when scanning an image.

Also, a shorter loop with few statements is generally more efficiently
executed than a longer loop over a single statement, even if the total
number of elements processed is the same. Similarly, if you have N
different computations to apply to a pixel, apply all of them in one loop
rather than writing N successive loops, one for each computation.

We also performed the continuity test that produces one loop in the case
of continuous images instead of the regular double loop over lines and
columns. We obtained a slight reduction in the runtime by an average
factor of 10%. In general, it is a good practice to use this strategy, since
it can lead to a significant gain in speed.

There's more...
Multithreading is another way to increase the efficiency of your
algorithms, especially since the advent of multicore processors.
OpenMP, the Intel Threading Building Blocks (TBB) and Posix are
popular APIs that are used in concurrent programming to create and
manage your threads. In addition, C++11 now offers built-in support for
threads.

See also
The Performing simple image arithmetic recipe presents an
implementation of the color-reduction function (described in the
There's more... section) that uses the OpenCV arithmetic image
operators and has a runtime of 0.091 ms, 0.047 ms, and 0.087 for
the three test configurations.
The Applying look-up tables to modify the image's



appearance recipe of Chapter 4, Counting the Pixels with
Histograms describes an implementation of the color-reduction
function based on a look-up table. The idea is to precompute all
intensity reduction values that lead to a runtime of 0.129 ms, 0.098
ms, and 0.206 ms.



Scanning an image with neighbor
access
In image processing, it is common to have a processing function that
computes a value at each pixel location based on the value of the
neighboring pixels. When this neighborhood includes pixels of the
previous and next lines, you then need to simultaneously scan several
lines of the image. This recipe shows you how to do it.

Getting ready
To illustrate this recipe, we will apply a processing function that
sharpens an image. It is based on the Laplacian operator (which will be
discussed in Chapter 6 , Filtering the Images). It is indeed, a well-
known result in image processing that if you subtract the Laplacian from
an image, the image edges are amplified, thereby giving a sharper image.

This sharpened value is computed as follows:

    sharpened_pixel= 5*current-left-right-up-down; 

Here, left is the pixel that is immediately on the left-hand side of the
current one, up is the corresponding one on the previous line, and so on.

How to do it...
This time, the processing cannot be accomplished in-place. Users need
to provide an output image. The image scanning is done using three
pointers, one for the current line, one for the line above, and another
one for the line below. Also, since each pixel computation requires
access to the neighbors, it is not possible to compute a value for the
pixels of the first and last row of the image as well as the pixels of the
first and last column. The loop can then be written as follows:

    void sharpen(const cv::Mat &image, cv::Mat &result) { 
 
      // allocate if necessary 



      result.create(image.size(), image.type());  
      int nchannels= image.channels(); // get number of 
channels 
  
      // for all rows (except first and last) 
      for (int j= 1; j<image.rows-1; j++) {  
 
        const uchar* previous= image.ptr<const uchar>(j-1);// 
previous row 
        const uchar* current= image.ptr<const uchar>(j);   // 
current row 
        const uchar* next= image.ptr<const uchar>(j+1);    // 
next row 
 
        uchar* output= result.ptr<uchar>(j); // output row 
 
        for (int i=nchannels; i<(image.cols-1)*nchannels; i++) 
{ 
 
          // apply sharpening operator 
          *output++= cv::saturate_cast<uchar>( 
                  5*current[i]-current[i-nchannels]- 
                  current[i+nchannels]-previous[i]-next[i]);  
        } 
      } 
 
      // Set the unprocessed pixels to 0 
      result.row(0).setTo(cv::Scalar(0)); 
      result.row(result.rows-1).setTo(cv::Scalar(0)); 
      result.col(0).setTo(cv::Scalar(0)); 
      result.col(result.cols-1).setTo(cv::Scalar(0)); 
    } 

Note how we wrote the function such that it would work on both gray-
level and color images. If we apply this function on a gray-level version
of our test image, the following result is obtained:



How it works...
In order to access the neighboring pixels of the previous and next row,
you must simply define additional pointers that are jointly incremented.
You then access the pixels of these lines inside the scanning loop.

In the computation of the output pixel value, the cv::saturate_cast
template function is called on the result of the operation. This is
because, often,  a mathematical expression applied on pixels leads to a
result that goes outside the range of the permitted pixel values (that is,
below 0 or over 255). The solution is then to bring the values back inside
this 8-bit range. This is done by changing negative values to 0 and values
over 255 to 255. This is exactly what the cv::saturate_cast<uchar>
function is doing. In addition, if the input argument is a floating point
number, then the result is rounded to the nearest integer. You can
obviously use this function with other types in order to guarantee that
the result will remain within the limits defined by this type.



Border pixels that cannot be processed because their neighborhood is
not completely defined need to be handled separately. Here, we simply
set them to 0. In other cases, it could be possible to perform a special
computation for these pixels, but most of the time, there is no point in
spending time to process these very few pixels. In our function, these
border pixels are set to 0 using two special methods, row and col. They
return a special cv::Mat instance composed of a single-line ROI (or a
single-column ROI) as specified in a parameter (remember, we discussed
region of interest in the previous chapter). No copy is made here;
therefore if the elements of this 1D matrix are modified, they will also
be modified in the original image. This is what we do when the
setTo method is called. This method assigns a value to all elements of a
matrix, as follows:

    result.row(0).setTo(cv::Scalar(0)); 

The preceding statement assigns the value of 0 to all pixels of the first
line of the result image. In the case of a 3-channel color image, you
would use cv::Scalar(a,b,c) to specify the three values to be assigned
to each channel of the pixel.

There's more...
When a computation is done over a pixel neighborhood, it is common to
represent this with a kernel matrix. This kernel describes how the pixels
involved in the computation are combined in order to obtain the desired
result. For the sharpening filter used in this recipe, the kernel would be
as follows:



Unless stated otherwise, the current pixel corresponds to the center of
the kernel. The value in each cell of the kernel represents a factor that
multiplies the corresponding pixel. The result of the application of the
kernel on a pixel is then given by the sum of all these multiplications.
The size of the kernel corresponds to the size of the neighborhood (here,
3x3).

Using this representation, it can be seen that, as required by the
sharpening filter, the four horizontal and vertical neighbors of the
current pixel are multiplied by -1, while the current pixel is multiplied
by 5. Applying a kernel to an image is more than a convenient
representation; it is the basis for the concept of convolution in signal
processing. The kernel defines a filter that is applied to the image.

Since filtering is a common operation in image processing, OpenCV has
defined a special function that performs this task: the cv::filter2D
function. To use this, you just need to define a kernel (in the form of a
matrix). The function is then called with the image and the kernel, and it
returns the filtered image. Using this function, it is therefore easy to
redefine our sharpening function as follows:

    void sharpen2D(const cv::Mat &image, cv::Mat &result) { 
 
      // Construct kernel (all entries initialized to 0) 
      cv::Mat kernel(3,3,CV_32F,cv::Scalar(0)); 
      // assigns kernel values 
      kernel.at<float>(1,1)= 5.0; 
      kernel.at<float>(0,1)= -1.0; 
      kernel.at<float>(2,1)= -1.0; 
      kernel.at<float>(1,0)= -1.0; 
      kernel.at<float>(1,2)= -1.0; 
 
      //filter the image 
      cv::filter2D(image,result,image.depth(),kernel); 
    } 

This implementation produces exactly the same result as the previous
one (and with the same efficiency). If you input a color image, then the



same kernel will be applied to all three channels. Note that it is
particularly advantageous to use the filter2D function with a large
kernel, as it uses, in this case, a more efficient algorithm.

See also
Chapter 6, Filtering the Images, provides more explanations on the
concept of image filtering



Performing simple image
arithmetic
Images can be combined in different ways. Since they are regular
matrices, they can be added, subtracted, multiplied, or divided. OpenCV
offers various image arithmetic operators, and their use is discussed in
this recipe.

Getting ready
Let's work with a second image that we will combine with our input
image using an arithmetic operator. The following represents this second
image:

How to do it...
Here, we add two images. This is useful when we want to create some
special effects or to overlay information over an image. We do this by
calling the cv::add function, or more precisely here, the
cv::addWeighted function, since we want a weighted sum as follows:

  cv::addWeighted(image1,0.7,image2,0.9,0.,result); 



The operation results in a new image:

How it works...
All binary arithmetic functions work the same way. Two inputs are
provided and a third parameter specifies the output. In some cases,
weights that are used as scalar multipliers in the operation can be
specified. Each of these functions comes in several flavors; cv::add is a
good example of a function that is available in many forms:

    // c[i]= a[i]+b[i]; 
    cv::add(imageA,imageB,resultC);  
    // c[i]= a[i]+k; 
    cv::add(imageA,cv::Scalar(k),resultC);  
    // c[i]= k1*a[i]+k2*b[i]+k3;  
    cv::addWeighted(imageA,k1,imageB,k2,k3,resultC); 
    // c[i]= k*a[i]+b[i];  
    cv::scaleAdd(imageA,k,imageB,resultC); 

For some functions, you can also specify a mask:



    // if (mask[i]) c[i]= a[i]+b[i]; 
    cv::add(imageA,imageB,resultC,mask); 

If you apply a mask, the operation is performed only on pixels for which
the mask value is not null (the mask must be 1-channel). Have a look at
the different forms of cv::subtract, cv::absdiff, cv::multiply, and
cv::divide functions. Bitwise operators (operators applied to each
individual bit of the pixels' binary representation) are also available:
cv::bitwise_and, cv::bitwise_or, cv::bitwise_xor, and
cv::bitwise_not. The cv::min and cv::max operators, which find the
per-element maximum or minimum pixel value, are also very useful.

In all cases, the cv::saturate_cast function (see the preceding recipe)
is always used to make sure that the results stay within the defined pixel
value domain (that is, to avoid overflow or underflow).

The images must have the same size and type (the output image will be
reallocated if it does not match the input size). Also, since the operation
is performed per-element, one of the input images can be used as the
output.

Several operators that take a single image as the input are also available:
cv::sqrt, cv::pow, cv::abs, cv::cuberoot, cv::exp, and cv::log. In
fact, there exists an OpenCV function for almost any operation you have
to apply on image pixels.

There's more...
It is also possible to use the usual C++ arithmetic operator on the
cv::Mat instances or on the individual channels of cv::Mat instances.
The two following subsections explain how to do this.

Overloaded image operators

Very conveniently, most arithmetic functions have their corresponding
operator overloaded in OpenCV. Consequently, the call to
cv::addWeighted can instead be written as follows:

    result= 0.7*image1+0.9*image2; 



The preceding code is a more compact form that is also easier to read.
These two ways of writing the weighted sum are equivalent. In
particular, the cv::saturate_cast function will still be called in both
cases.

Most C++ operators have been overloaded. Among them are the bitwise
operators &, |, ^, and ~; the min, max, and abs functions. The comparison
operators <, <=, ==, !=, >, and >= have also been overloaded, and they
return an 8-bit binary image. You will also find the m1*m2 matrix
multiplication (where m1 and m2 are both cv::Mat instances), the
m1.inv() matrix inversion, the m1.t() transpose, the m1.determinant()
determinant, the v1.norm() vector norm, the v1.cross(v2) cross-
product, the v1.dot(v2) dot product, and so on. When this makes sense,
you also have the corresponding compound assignment operator defined
(the += operator, as an example).

In the Writing efficient image-scanning loops recipe, we presented a
color-reduction function that was written using loops that scan the image
pixels to perform some arithmetic operations on them. From what we
learned here, this function could be rewritten simply using arithmetic
operators on the input image as follows:

     image=(image&cv::Scalar(mask,mask,mask)) 
                  +cv::Scalar(div/2,div/2,div/2); 

The use of cv::Scalar is due to the fact that we are manipulating a color
image. Using the image operators makes the code so simple, and the
programmer so productive, that you should consider their use in most
situations.

Splitting the image channels

Sometimes you want to process the different channels of an image
independently. For example, you might want to perform an operation
only on one channel of the image. You can, of course, achieve this in an
image-scanning loop. However, you can also use the cv::split function
that will copy the three channels of a color image into three distinct
cv::Mat instances. Suppose we want to add our rain image to the blue



channel only. The following is how we would proceed:

    // create vector of 3 images 
    std::vector<cv::Mat> planes; 
    // split 1 3-channel image into 3 1-channel images 
    cv::split(image1,planes); 
    // add to blue channel 
    planes[0]+= image2; 
    // merge the 3 1-channel images into 1 3-channel image 
    cv::merge(planes,result); 

The cv::merge function performs the inverse operation, that is, it creates
a color image from three 1-channel images.



Remapping an image
In the recipes of this chapter, you learned how to read and modify the
pixel values of an image. The last recipe will teach you how to modify
the appearance of an image by moving its pixels. The pixel values are
not changed by this process; it is rather the position of each pixel that is
remapped to a new location. This is useful in order to create special
effects on an image or to correct image distortions caused, for example,
by a lens.

How to do it...
In order to use the OpenCV remap function, you simply have to first
define the map to be used in the remapping process. Second, you have
to apply this map on an input image. Obviously, it is the way you define
your map that will determine the effect that will be produced. In our
example, we define a transformation function that will create a wavy
effect on the image:

    // remapping an image by creating wave effects 
    void wave(const cv::Mat &image, cv::Mat &result) { 
 
      // the map functions 
      cv::Mat srcX(image.rows,image.cols,CV_32F); 
      cv::Mat srcY(image.rows,image.cols,CV_32F); 
 
      // creating the mapping 
      for (int i=0; i<image.rows; i++) { 
        for (int j=0; j<image.cols; j++) { 
 
          // new location of pixel at (i,j) 
          srcX.at<float>(i,j)= j; // remain on same column 
                                  // pixels originally on row i 
are now 
                                  // moved following a sinusoid  
          srcY.at<float>(i,j)= i+5*sin(j/10.0); 
        } 
      } 
 
      // applying the mapping 
      cv::remap(image,                // source image 



                result,               // destination image 
                srcX,                 // x map 
                srcY,                 // y map 
                cv::INTER_LINEAR);    // interpolation method 
    } 

The result is as follows:

How it works...
The objective of remapping is to produce a new version of an image in
which pixels have changed in position. To construct this new image, we
need to know what the original position is for each pixel in the
destination image. The mapping function that is needed is therefore the
one that will give us the original pixel positions as a function of the new
pixel positions. This is called backward mapping because the
transformation describes how the pixels of the new images are mapped
back to the original image. In OpenCV, backward mapping is described
using two maps: one for the x-coordinates and one for the y-coordinates.



They are both represented by floating point cv::Mat instances:

    // the map functions 
    cv::Mat srcX(image.rows,image.cols,CV_32F); // x-map 
    cv::Mat srcY(image.rows,image.cols,CV_32F); // y-map 

The size of these matrices will define the size of the destination image.
The value of the (i,j) pixel of the destination image can then be read in
the source image using the following line of code:

    ( srcX.at<float>(i,j) , srcY.at<float>(i,j) ) 

For example, a simple image flip effect like the one we demonstrated in
Chapter 1 , Playing with Images, can be created by the following maps:

    // creating the mapping 
    for (int i=0; i<image.rows; i++) { 
      for (int j=0; j<image.cols; j++) { 
 
        // horizontal flipping 
        srcX.at<float>(i,j)= image.cols-j-1; 
        srcY.at<float>(i,j)= i; 
      } 
    } 

To generate the resulting image, you simply call the OpenCV remap
function:

    // applying the mapping 
    cv::remap(image,             // source image
              result,            // destination image 
              srcX,              // x map 
              srcY,              // y map 
              cv::INTER_LINEAR); // interpolation method 

It is interesting to note that the two maps contain floating-point values.
Consequently, a pixel in the destination can map back to a non-integral
value (that is, a location between pixels). This is very convenient
because this allows us to define the mapping function of our choice. For
instance, in our remapping example, we used a sinusoidal function to
define our transformation. However, this also means that we have to
interpolate the value of virtual pixels in between real pixels. There exist



different ways of performing pixel interpolation, and the last parameter
of the remap function allows us to select the method that will be used.
Pixel interpolation is an important concept in image processing; this
subject will be discussed in Chapter 6 , Filtering the Images.

See also
The There's more... section of the Filtering images using low-pass
filters recipe of Chapter 6, Filtering the Images, explains the
concept of pixel interpolation
The Calibrating a camera recipe of Chapter 11 , Reconstructing 3D
Scenes, uses remapping to correct lens distortions in an image
The Computing a homography between two images recipe of
Chapter 10 , Estimating Projective Relations in Images, uses
perspective image warping to build an image panorama



Chapter 3. Processing the Colors
of an Image
In this chapter, we will cover the following recipes:

Comparing colors using the Strategy design pattern
Segmenting an image with the GrabCut algorithm
Converting color representations
Representing colors with hue, saturation, and brightness

Introduction
The ability to see the world in colors is one of the important
characteristics of the human visual system. The retina of the human eye
includes specialized photoreceptors, called cones, which are responsible
for the perception of colors. There are three types of cones that differ in
the wavelength range of light they absorb; using the stimuli from these
different cells, the human brain is able to create color perception. Most
other animals only have rod cells, which are photoreceptors with better
light sensitivity but that cover the full spectrum of visible light without
color discrimination. In the human eye, rods are mainly located at the
periphery of the retina, while the cones are concentrated in the central
part.

In digital imaging, colors are generally reproduced by using the red,
green, and blue additive primary colors. These have been selected
because when they are combined together, they can produce a wide
gamut of different colors. In fact, this choice of primaries mimics well
the trichromatic color perception of the human visual system as the
different cone cells have sensitivity located around the red, green, and
blue spectrum. In this chapter, you will play with the pixel color and see
how an image can be segmented based on the color information. In
addition, you will learn that it can sometimes be useful to use a different
color representation when performing color image processing.



Comparing colors using the
Strategy design pattern
Let's say we want to build a simple algorithm that will identify all of the
pixels in an image that have a given color. For this, the algorithm has to
accept an image and a color as input and will return a binary image
showing the pixels that have the specified color. The tolerance with
which we want to accept a color will be another parameter to be
specified before running the algorithm.

In order to accomplish this objective, this recipe will use the Strategy
design pattern. This object-oriented design pattern constitutes an
excellent way of encapsulating an algorithm in a class. It becomes then
easier to replace a given algorithm with another one, or to chain several
algorithms together in order to build a more complex process. In
addition, this pattern facilitates the deployment of an algorithm by
hiding as much of its complexity as possible behind an intuitive
programming interface.

How to do it…
Once an algorithm has been encapsulated in a class using the Strategy
design pattern, it can be deployed by creating an instance of this class.
Typically, the instance will be created when the program is initialized. At
the time of construction, the class instance will initialize the different
parameters of the algorithm with their default values so that it will
immediately be ready to be used. The algorithm's parameter values can
also be read and set using appropriate methods. In the case of an
application with a GUI, these parameters can be displayed and modified
using different widgets (text fields, sliders, and so on) so that a user can
easily play with them.

We will show you the structure of a Strategy class in the next section;
let's start with an example of how it can be deployed and used. Let's
write a simple main function that will run our proposed color detection



algorithm:

    int main() 
    { 
      //1. Create image processor object 
      ColorDetector cdetect; 
 
      //2. Read input image 
      cv::Mat image= cv::imread("boldt.jpg"); 
      if (image.empty()) return 0;  
 
      //3. Set input parameters 
      cdetect.setTargetColor(230,190,130);  // here blue sky 
 
      //4. Process the image and display the result 
      cv::namedWindow("result"); 
      cv::Mat result = cdetect.process(image); 
      cv::imshow("result",result); 
 
      cv::waitKey(); 
      return 0; 
    } 

Running this program to detect a blue sky in the colored version of the
Castle image presented in the previous chapter produces the following
output:



Here, a white pixel indicates a positive detection of the sought color, and
black indicates negative.

Obviously, the algorithm we encapsulated in this class is relatively
simple (as we will see next, it is composed of just one scanning loop and
one tolerance parameter). The Strategy design pattern becomes really
powerful when the algorithm to be implemented is more complex, has
many steps, and includes several parameters.

How it works…
The core process of this algorithm is easy to build. It is a simple scanning
loop that goes over each pixel, comparing its color with the target color.
Using what we learned in the Scanning an image with iterators recipe of
the previous chapter, this loop can be written as follows:

    // get the iterators 
    cv::Mat_<cv::Vec3b>::const_iterator it= 
image.begin<cv::Vec3b>(); 
    cv::Mat_<cv::Vec3b>::const_iterator itend= 



image.end<cv::Vec3b>(); 
    cv::Mat_<uchar>::iterator itout= result.begin<uchar>(); 
 
    //for each pixel 
    for ( ; it!= itend; ++it, ++itout) { 
 
      // compute distance from target color 
      if (getDistanceToTargetColor(*it)<=maxDist) { 
        *itout= 255; 
      } else { 
       *itout= 0; 
      } 
    } 

The cv::Mat variable image refers to the input image, while result
refers to the binary output image. Therefore, the first step consists of
setting up the required iterators. The scanning loop then becomes easy
to implement. Note that the input image iterators are declared const as
the values of their elements are not modified. The distance between the
current pixel color and the target color is evaluated for each pixel in
order to check whether it is within the tolerance parameter defined by
maxDist. If that is the case, the value 255 (white) is then assigned to the
output image; if not, 0 (black) is assigned. To compute the distance to
the target color, the getDistanceToTargetColor method is used. There
are different ways to compute this distance.

One could, for example, calculate the Euclidean distance between the
three vectors that contain the RGB color values. To keep this
computation simple, we sum the absolute differences of the RGB values
(this is also known as the city-block distance). Note that in modern
architecture, a floating-point Euclidean distance can be faster to
compute than a simple city-block distance (in addition, you can also use
squared Euclidean distances to avoid the costly square-root); this is also
something to take into consideration in your design. Also, for more
flexibility, we write the getDistanceToTargetColor method in terms of a
getColorDistance method, as follows:

    // Computes the distance from target color. 
    int getDistanceToTargetColor(const cv::Vec3b& color) const 
{ 



      return getColorDistance(color, target); 
    } 
    // Computes the city-block distance between two colors. 
    int getColorDistance(const cv::Vec3b& color1,  
    const cv::Vec3b& color2) const { 
      return abs(color1[0]-color2[0])+
             abs(color1[1]-color2[1])+ 
             abs(color1[2]-color2[2]); 
    } 

Note how we used cv::Vec3d to hold the three unsigned chars that
represent the RGB values of a color. The target variable obviously
refers to the specified target color, and as we will see, it is defined as a
member variable in the class algorithm that we will define. Now, let's
complete the definition of the processing method. Users will provide an
input image, and the result will be returned once the image scanning is
completed:

    cv::Mat ColorDetector::process(const cv::Mat &image) { 
 
      // re-allocate binary map if necessary 
      // same size as input image, but 1-channel 
      result.create(image.size(),CV_8U); 
 
      // processing loop above goes here 
      return result; 
    }

Each time this method is called, it is important to check if the output
image that contains the resulting binary map needs to be reallocated to
fit the size of the input image. This is why we use the create method of
cv::Mat. Remember that this method will only proceed to reallocation if
the specified size and/or depth do not correspond to the current image
structure.

Now that we have the core processing method defined, let's see what
additional methods should be added in order to deploy this algorithm.
We have previously determined what input and output data our
algorithm requires. Therefore, we define the class attributes that will
hold this data:



    class ColorDetector {
      private: 
 
      // minimum acceptable distance 
      int maxDist;  
      // target color 
      cv::Vec3b target; 
 
      // image containing resulting binary map 
      cv::Mat result;

In order to create an instance of the class that encapsulates our
algorithm (which we have named ColorDetector), we need to define a
constructor. Remember that one of the objectives of the Strategy design
pattern is to make algorithm deployment as easy as possible. The
simplest constructor that can be defined is an empty one. It will create
an instance of the class algorithm in a valid state. We then want the
constructor to initialize all the input parameters to their default values
(or the values that are known to generally give a good result). In our
case, we decided that a distance of 100 is generally an acceptable
tolerance parameter. We also set the default target color. We chose
black for no particular reason. The idea is to make sure we always start
with predictable and valid input values:

    // empty constructor 
    // default parameter initialization here 
    ColorDetector() : maxDist(100), target(0,0,0) {} 

Another option would have been not create an empty constructor and
rather force the user to input a target color and a color distance in a
more elaborated constructor:

    // another constructor with target and distance 
    ColorDetector(uchar blue, uchar green, uchar red, int 
mxDist); 

At this point, a user who creates an instance of our class algorithm can
immediately call the process method with a valid image and obtain a
valid output. This is another objective of the Strategy pattern, that is, to
make sure that the algorithm always runs with valid parameters.
Obviously, the users of this class will want to use their own settings. This



is done by providing the user with the appropriate getters and setters.
Let's start with the color tolerance parameter:

    // Sets the color distance threshold 
    // Threshold must be positive, 
    // otherwise distance threshold is set to 0. 
    void setColorDistanceThreshold(int distance) { 
 
      if (distance<0) 
        distance=0; 
        maxDist= distance; 
      } 
 
      // Gets the color distance threshold 
      int getColorDistanceThreshold() const { 
        return maxDist; 
      }

Note how we first check the validity of the input. Again, this is to make
sure that our algorithm will never be run in an invalid state. The target
color can be set in a similar manner, as follows:

    // Sets the color to be detected 
    void setTargetColor(uchar blue,
                        uchar green,
                        uchar red) { 
      // BGR order 
      target = cv::Vec3b(blue, green, red); 
    } 
    // Sets the color to be detected 
    void setTargetColor(cv::Vec3b color) { 
      target= color; 
    } 
 
    // Gets the color to be detected 
    cv::Vec3b getTargetColor() const { 
      return target; 
    } 

This time, it is interesting to note that we have provided the user with
two definitions of the setTargetColor method. In the first version of the
definition, the three color components are specified as three arguments,
while in the second version, cv::Vec3b is used to hold the color values.
Again, the objective is to facilitate the use of our class algorithm. The



users can simply select the setter that best fits their needs.

There's more…
The example algorithm used in this recipe consisted of identifying the
pixels of an image that has a color sufficiently close to a specified target
color. This computation could have been done otherwise. Interestingly,
an OpenCV function performs a similar task in order to extract a
connected component of a given color. Also, the implementation of a
Strategy design pattern could be complemented using function objects.
Finally, OpenCV has defined a base class, cv::Algorithm, that
implements the Strategy design pattern concepts.

Computing the distance between two color vectors

To compute the distance between two color vectors, we used the
following simple formula:

    return abs(color[0]-target[0])+
           abs(color[1]-target[1])+
           abs(color[2]-target[2]); 

However, OpenCV includes a function to compute the Euclidean norm
of a vector. Consequently, we could have computed our distance as
follows:

    return static_cast<int>(
           cv::norm<int,3>(cv::Vec3i(color[0]-target[0],
                                     color[1]-target[1],
                                     color[2]-target[2]))); 

A very similar result would then be obtained using this definition of the
getDistance method. Here, we use cv::Vec3i (a 3-vector array of
integers) because the result of the subtraction is an integer value.

It is also interesting to recall from Chapter 2 , Manipulating Pixels, that
the OpenCV matrix and vector data structures include a definition of the
basic arithmetic operators. Consequently, one could have proposed the
following definition for the distance computation:



    return static_cast<int>( cv::norm<uchar,3>(color-
target));// wrong! 

This definition may look right at the first glance; however, it is wrong.
This is because all these operators always include a call to
saturate_cast (see the Scanning an image with neighbor access recipe
in the previous chapter) in order to ensure that the results stay within the
domain of the input type (here, it is uchar). Therefore, in the cases
where the target value is greater than the corresponding color value, the
value 0 will be assigned instead of the negative value that one would
have expected. A correct formulation would then be as follows:

    cv::Vec3b dist; 
    cv::absdiff(color,target,dist); 
    return cv::sum(dist)[0];

However, using two function calls to compute the distance between two
3-vector arrays is inefficient.

Using OpenCV functions

In this recipe, we used a loop with iterators in order to perform our
computation. Alternatively, we could have achieved the same result by
calling a sequence of OpenCV functions. The color detection method
will then be written as follows:

    cv::Mat ColorDetector::process(const cv::Mat &image) { 
      cv::Mat output; 
      // compute absolute difference with target color 
      cv::absdiff(image,cv::Scalar(target),output); 
 
      // split the channels into 3 images 
      std::vector<cv::Mat> images; 
      cv::split(output,images); 
 
      // add the 3 channels (saturation might occurs here) 
      output= images[0]+images[1]+images[2]; 
      // apply threshold 
      cv::threshold(output,                  // same 
input/output image 
                    output,   
                    maxDist,                // threshold (must 



be < 256) 
                    255,                    // max value 
                    cv::THRESH_BINARY_INV); // thresholding 
mode 
 
      return output; 
    }

This method uses the absdiff function, which computes the absolute
difference between the pixels of an image and, in this case, a scalar
value. Instead of a scalar value, another image can be provided as the
second argument to this function. In the latter case, a pixel-by-pixel
difference will be applied; consequently, the two images must be of the
same size. The individual channels of the difference image are then
extracted using the split function (discussed in the There's more...
section of the Performing simple image arithmetic recipe of Chapter 2 ,
Manipulating Pixels) in order to be able to add them together. It is
important to note that the result of this sum may sometimes be greater
than 255, but because saturation is always applied, the result will be
stopped at 255. The consequence is that with this version, the maxDist
parameter must also be less than 256; this should be corrected if you
consider this behavior unacceptable.

The last step is to create a binary image by using the cv::threshold
function. This function is commonly used to compare all the pixels with
a threshold value (the third parameter), and in the regular thresholding
mode (cv::THRESH_BINARY), it assigns the defined maximum value (the
fourth parameter) to all the pixels greater than the specified threshold
and 0 to the other pixels. Here, we used the inverse mode
(cv::THRESH_BINARY_INV) in which the defined maximum value is
assigned to the pixels that have a value lower than or equal to the
threshold. Of interest are also the cv::THRESH_TOZERO and
cv::THRESH_TOZERO_INV modes, which leave the pixels greater than or
lower than the threshold unchanged.

Using the OpenCV functions is generally a good idea. You can then
quickly build complex applications and potentially reduce the number of
bugs. The result is often more efficient (thanks to the optimization



efforts invested by the OpenCV contributors). However, when many
intermediate steps are performed, you may find that the resulting
method consumes more memory.

The floodFill function

Our ColorDetector class identifies the pixels in an image that have a
color similar to a given target color. The decision to accept or not a pixel
is simply made on a per-pixel basis. The cv::floodFill function
proceeds in a very similar way with one important difference: in this
case, the decision to accept a pixel also depends on the state of its
neighbors. The idea is to identify a connected area of a certain color.
The user specifies a starting pixel location and tolerance parameters that
determine color similarity.

The seed pixel defines the color that is seek and from this seed location,
the neighbors are considered in order to identify pixels of similar color;
then the neighbors of the accepted neighbors are also considered and so
on. This way, one area of constant color will be extracted from the
image. For example, to detect the blue sky area in our example image,
you could proceed as follows:

    cv::floodFill(image,              // input/ouput image 
           cv::Point(100, 50),        // seed point 
           cv::Scalar(255, 255, 255), // repainted color 
           (cv::Rect*)0,              // bounding rect of the 
repainted set 
           cv::Scalar(35, 35, 35),    // low/high difference 
threshold 
           cv::Scalar(35, 35, 35),    // identical most of the 
time  
           cv::FLOODFILL_FIXED_RANGE);// pixels compared to 
seed 

The seed pixel (100, 50) is located in the sky. All connected pixels will
be tested and the ones having a similar color will be repainted in a new
color specified by the third parameter. To determine if a color is similar
or not, different thresholds are defined independently for values that are
higher or lower than the reference color. Here, we used fixed range
mode, which implies that the tested pixels will all be compared to the



seed pixel's color. The default mode is the one where each tested pixel is
compared to the color of its neighbors. The result obtained is as follows:

A single connected area is repainted by the algorithm (here, we painted
the sky in white). Therefore, even if there are some pixels somewhere
else with a similar color (in the water, for instance), these ones would
not be identified unless they were connected to the sky area.

Functor or function object

Using the C++ operator overloading, it is possible to create a class for
which its instances behave as functions. The idea is to overload the
operator() method so that a call to the processing method of a class
looks exactly like a simple function call. The resulting class instance is
called a function object, or a functor. Often, a functor includes a full
constructor such that it can be used immediately after being created. For
example, you can define the full constructor of your ColorDetector
class as follows:



    // full constructor 
    ColorDetector(uchar blue, uchar green, uchar red, int  
maxDist=100): 
                  maxDist(maxDist) {  
 
      // target color 
      setTargetColor(blue, green, red); 
    } 

Obviously, you can still use the setters and getters that have been
defined previously. The functor method can be defined as follows:

    cv::Mat operator()(const cv::Mat &image) { 
      // color detection code here  
    } 

To detect a given color with this functor method, simply write the
following code snippet:

    ColorDetector colordetector(230,190,130,  // color 
                                100);         // threshold 
    cv::Mat result= colordetector(image);     // functor call 

As you can see, the call to the color detection method now looks like a
function call.

The OpenCV base class for algorithms

OpenCV offers many algorithms that perform various computer vision
tasks. To facilitate their use, most of these algorithms have been made
subclass of a generic base class called cv::Algorithm. This one
implements some of the concepts dictated by the Strategy design
pattern. First, all these algorithms are created dynamically using a
specialized static method that makes sure that the algorithm is always
created in a valid state (that is, with valid default values for the
unspecified parameters). Let's consider, for example, one of these
subclasses, cv::ORB; this one is an interest point operator that will be
discussed in the Detecting FAST features at Multiple Scales recipe in 
Chapter 8 , Detecting Interest Points. Here, we simply use it as an
illustrative example of an algorithm.



An instance of this algorithm is therefore created as follows:

    cv::Ptr<cv::ORB> ptrORB = cv::ORB::create(); // default 
state 

  Once created, the algorithm can then be used. For example, the generic
methods read and write can be used to load or store the state of the
algorithm. The algorithms also have specialized methods (in the case of
ORB, for example, the methods detect and compute can be used to
trigger its main computational units). Algorithms also have specialized
setter methods that allows specifying their internal parameters. Note that
we could have declared the pointer as cv::Ptr<cv::Algorithm> but, in
this case, we would not be able to use its specialized methods.

See also
The policy-based class design, introduced by A. Alexandrescu, is an
interesting variant of the Strategy design pattern in which algorithms
are selected at compile time
The Converting color representation recipe introduces the concept
of perceptually uniform color spaces to achieve more intuitive color
comparison



Segmenting an image with the
GrabCut algorithm
The previous recipe showed how color information can be useful to
segment an image into area corresponding to specific elements of a
scene. Objects often have distinctive colors, and these ones can often be
extracted by identifying areas of similar colors. OpenCV proposes an
implementation of a popular algorithm for image segmentation: the
GrabCut algorithm. GrabCut is a complex and computationally
expensive algorithm, but it generally produces very accurate results. It is
the best algorithm to use when you want to extract a foreground object
in a still image (for example, to cut and paste an object from one picture
to another).

How to do it…
The cv::grabCut function is easy to use. You just need to input an image
and label some of its pixels as belonging to the background or to the
foreground. Based on this partial labeling, the algorithm will then
determine a foreground/ background segmentation for the complete
image.

One way to specify a partial foreground/background labeling for an
input image is by defining a rectangle inside which the foreground object
is included:

    // define bounding rectangle 
    // the pixels outside this rectangle 
    // will be labeled as background 
    cv::Rect rectangle(5,70,260,120); 

This defines the following area in the image:



All the pixels outside this rectangle will then be marked as background.
In addition to the input image and its segmentation image, calling the
cv::grabCut function requires the definition of two matrices, which will
contain the models built by the algorithm as follows:

    cv::Mat result;                     // segmentation (4 
possible values) 
    cv::Mat bgModel,fgModel;            // the models 
(internally used) 
    // GrabCut segmentation    
    cv::grabCut(image,                  // input image 
                result,                 // segmentation result 
                rectangle,              // rectangle containing 
foreground 
                bgModel,fgModel,        // models 
                5,                      // number of iterations  
                cv::GC_INIT_WITH_RECT); // use rectangle 

  Note how we specified that we are using the bounding rectangle mode
with the cv::GC_INIT_WITH_RECT flag as the last argument of the
function (the next section, How it works..., will discuss the other



available mode). The input/output segmentation image can have one of
the following four values:

cv::GC_BGD: This is the value of the pixels that certainly belong to
the background (for example, pixels outside the rectangle in our
example)
cv::GC_FGD: This is the value of the pixels that certainly belong to
the foreground (there are none in our example)
cv::GC_PR_BGD: This is the value of the pixels that probably belong
to the background
cv::GC_PR_FGD: This is the value of the pixels that probably belong
to the foreground (that is, the initial value of the pixels inside the
rectangle in our example)

We get a binary image of the segmentation by extracting the pixels that
have a value equal to cv::GC_PR_FGD. This is accomplished with the
following code:

    // Get the pixels marked as likely foreground 
    cv::compare(result,cv::GC_PR_FGD,result,cv::CMP_EQ); 
    // Generate output image 
    cv::Mat 
foreground(image.size(),CV_8UC3,cv::Scalar(255,255,255)); 
    image.copyTo(foreground,// bg pixels are not copied 
result);

To extract all the foreground pixels, that is, with values equal to
cv::GC_PR_FGD or cv::GC_FGD, it is possible to check the value of the
first bit, as follows:

    // checking first bit with bitwise-and 
    result= result&1; // will be 1 if FG 

This is possible because these constants are defined as values 1 and 3,
while the other two (cv::GC_BGD and cv::GC_PR_BGD) are defined as 0
and 2. In our example, the same result is obtained because the
segmentation image does not contain the cv::GC_FGD pixels (only the
cv::GC_BGD pixels have been inputted).

The following image is then obtained:



How it works…
In the preceding example, the GrabCut algorithm was able to extract the
foreground object by simply specifying a rectangle inside which this
objects (the castle) was contained. Alternatively, one could also assign
the values cv::GC_BGD and cv::GC_FGD to some specific pixels of the
input image, which are provided by using a mask image as the second
argument of the cv::grabCut function. You would then specify
GC_INIT_WITH_MASK as the input mode flag. These input labels could be
obtained, for example, by asking a user to interactively mark a few
elements of the image. It is also possible to combine these two input
modes.

Using this input information, the GrabCut algorithm creates the
background/foreground segmentation by proceeding as follows. Initially,
a foreground label (cv::GC_PR_FGD) is tentatively assigned to all the
unmarked pixels. Based on the current classification, the algorithm
groups the pixels into clusters of similar colors (that is, K clusters for the



background and K clusters for the foreground). The next step is to
determine a background/ foreground segmentation by introducing
boundaries between the foreground and background pixels.

This is done through an optimization process that tries to connect pixels
with similar labels, and that imposes a penalty for placing a boundary in
the regions of relatively uniform intensity. This optimization problem can
be efficiently solved using the Graph Cuts algorithm, a method that can
find the optimal solution of a problem by representing it as a connected
graph on which cuts are applied in order to compose an optimal
configuration. The obtained segmentation produces new labels for the
pixels.

The clustering process can then be repeated, and a new optimal
segmentation is found again, and so on. Therefore, the GrabCut
algorithm is an iterative procedure that gradually improves the
segmentation result. Depending on the complexity of the scene, a good
solution can be found in more or less number of iterations (in easy cases,
one iteration would be enough).

This explains the argument of the function where the user can specify
the number of iterations to be applied. The two internal models
maintained by the algorithm are passed as an argument of the function
(and returned). Therefore, it is possible to call the function with the
models of the last run again if one wishes to improve the segmentation
result by performing additional iterations.

See also
The article GrabCut: Interactive Foreground Extraction using
Iterated Graph Cuts in ACM Transactions on Graphics
(SIGGRAPH) volume 23, issue 3, August 2004, C. Rother, V.
Kolmogorov, and A. Blake describes the GrabCut algorithm in detail
The Segmenting images using watersheds recipe in Chapter 5,
Transforming Images with Morphological Operations, presents
another image segmentation algorithm



Converting color representations
The RGB color space is based on the use of the red, green, and blue
additive primary colors. We saw in the first recipe of this chapter that
these primaries have been chosen because they can produce a good
range of colors well aligned with the human visual system. It is often the
default color space in digital imagery because this is the way color
images are acquired, that is, through the use of red, green, and blue
filters. Additionally, the red, green, and blue channels are normalized
such that when combined in equal amounts, a gray-level intensity is
obtained, that is, from black (0,0,0) to white (255,255,255).

Unfortunately, computing the distance between the colors using the
RGB color space is not the best way to measure the similarity between
two given colors. Indeed, RGB is not a perceptually uniform color
space. This means that two colors at a given distance might look very
similar, while two other colors separated by the same distance might
look very different.

To solve this problem, other color representations that have the property
of being perceptually uniform have been introduced. In particular, the
CIE L*a*b* is one such color model. By converting our images to this
representation, the Euclidean distance between an image pixel and the
target color will then be a meaningful measure of the visual similarity
between the two colors. In this recipe, we will show you how to convert
colors from one representation to another in order to work with other
color spaces.

How to do it…
Conversion of images between different color spaces is easily done
through the use of the cv::cvtColor OpenCV function. Let's revisit the
ColorDetector class of the first recipe of this chapter, Comparing colors
using the Strategy design pattern. We now convert the input image to
the CIE L*a*b* color space at the beginning of the process method:



    cv::Mat ColorDetector::process(const cv::Mat &image) { 
 
      // re-allocate binary map if necessary 
      // same size as input image, but 1-channel 
      result.create(image.rows,image.cols,CV_8U); 
 
      // Converting to Lab color space  
      cv::cvtColor(image, converted, CV_BGR2Lab); 
 
      // get the iterators of the converted image  
      cv::Mat_<cv::Vec3b>::iterator it=  
converted.begin<cv::Vec3b>(); 
      cv::Mat_<cv::Vec3b>::iterator itend= 
converted.end<cv::Vec3b>(); 
      // get the iterator of the output image  
      cv::Mat_<uchar>::iterator itout= result.begin<uchar>(); 
 
      // for each pixel 
      for ( ; it!= itend; ++it, ++itout) { 

The converted variable contains the image after color conversion. In the
ColorDetector class, it is defined as a class attribute:

    class ColorDetector { 
      private: 
      // image containing color converted image 
      cv::Mat converted; 

You also need to convert the input target color. You can do this by
creating a temporary image that contains only one pixel. Note that you
need to keep the same signature as in the earlier recipes, that is, the user
continues to supply the target color in RGB:

    // Sets the color to be detected 
    void setTargetColor(unsigned char red, unsigned char green,
                        unsigned char blue) { 
 
      // Temporary 1-pixel image 
      cv::Mat tmp(1,1,CV_8UC3); 
      tmp.at<cv::Vec3b>(0,0)= cv::Vec3b(blue, green, red); 
 
      // Converting the target to Lab color space  
      cv::cvtColor(tmp, tmp, CV_BGR2Lab); 
 
      target= tmp.at<cv::Vec3b>(0,0); 



    } 

If the application of the preceding recipe is compiled with this modified
class, it will now detect the pixels of the target color using the CIE
L*a*b* color model.

How it works…
When an image is converted from one color space to another, a linear or
nonlinear transformation is applied on each input pixel to produce the
output pixels. The pixel type of the output image will match the one of
the input image. Even if you work with 8-bit pixels most of the time, you
can also use a color conversion with floating-point images (in which
case, the pixel values are generally assumed to vary between 0 and 1.0)
or with integer images (with pixels generally varying between 0 and
65535). However, the exact domain of the pixel values depends on the
specific color space and destination image type. For example, with the
CIE L*a*b* color space, the L channel, which represents the brightness
of each pixel, varies between 0 and 100, and it is rescaled between 0 and
255 in the case of the 8-bit images.

The a and b channels correspond to the chromaticity components. These
channels contain information about the color of a pixel, independent of
its brightness. Their values vary between -127 and 127; for 8-bit images,
128 is added to each value in order to make it fit within the 0 to 255
interval. However, note that the 8-bit color conversion will introduce
rounding errors that will make the transformation imperfectly reversible.

Most commonly used color spaces are available. It is just a question of
providing the right color space conversion code to the OpenCV function
(for CIE L*a*b*, this code is CV_BGR2Lab). Among these is YCrCb,
which is the color space used in JPEG compression. To convert a color
space from BGR to YCrCb, the code will be CV_BGR2YCrCb. Note that all
the conversions that involve the three regular primary colors, red, green,
and blue, are available in the RGB and BGR order.

The CIE L*u*v* color space is another perceptually uniform color



space. You can convert from BGR to CIE L*u*v by using the
CV_BGR2Luv code. Both L*a*b* and L*u*v* use the same conversion
formula for the brightness channel but use a different representation for
the chromaticity channels. Also, note that since these two color spaces
distort the RGB color domain in order to make it perceptually uniform,
these transformations are nonlinear (therefore, they are costly to
compute).

There is also the CIE XYZ color space (with the CV_BGR2XYZ code). It is
a standard color space used to represent any perceptible color in a
device-independent way. In the computation of the L*u*v and L*a*b
color spaces, the XYZ color space is used as an intermediate
representation. The transformation between RGB and XYZ is linear. It is
also interesting to note that the Y channel corresponds to a gray-level
version of the image.

HSV and HLS are interesting color spaces because they decompose the
colors into their hue and saturation components plus the value or
luminance component, which is a more natural way for humans to
describe colors. The next recipe will present this color space.

You can also convert color images to gray-level intensities. The output
will be a one-channel image:

    cv::cvtColor(color, gray, CV_BGR2Gray); 

It is also possible to do the conversion in the other direction, but the
three channels of the resulting color image will then be identically filled
with the corresponding values in the gray-level image.

See also
The Using the mean shift algorithm to find an object recipe in
Chapter 4, Counting the Pixels with Histograms, uses the HSV
color space in order to find an object in an image.
Many good references are available on the color space theory.
Among them, the following is a complete reference: The Structure
and Properties of Color Spaces and the Representation of Color



Images, E. Dubois, Morgan and Claypool Publishers, 2009.



Representing colors with hue,
saturation, and brightness
In this chapter, we played with image colors. We used different color
spaces and tried to identify image areas of uniform color. The RGB
color space was initially considered, and although it is an effective
representation for the capture and display of colors in electronic imaging
systems, this representation is not very intuitive. Indeed, this is not the
way humans think about colors; they most often describe colors in terms
of their tint, brightness, or colorfulness (that is, whether it is a vivid or
pastel color). A color space based on the concept of hue, saturation, and
brightness has then been introduced to help users to specify the colors
using properties that are more intuitive to them. In this recipe, we will
explore the concepts of hue, saturation, and brightness as a means to
describe colors.

How to do it...
The conversion of a BGR image into another color space is done using
the cv::cvtColor function that was explored in the previous recipe.
Here, we will use the CV_BGR2HSV conversion code:

    // convert into HSV space 
    cv::Mat hsv; 
    cv::cvtColor(image, hsv, CV_BGR2HSV); 

We can go back to the BGR space using the CV_HSV2BGR code. We can
visualize each of the HSV components by splitting the converted image
channels into three independent images, as follows:

    // split the 3 channels into 3 images 
    std::vector<cv::Mat> channels; 
    cv::split(hsv,channels); 
    // channels[0] is the Hue 
    // channels[1] is the Saturation 
    // channels[2] is the Value 



Note that the third channel is the value of the color, that is, an
approximate measure of the brightness of the color. Since we are
working on 8-bit images, OpenCV rescales the channel values to cover
the 0 to 255 range (except for the hue, which is rescaled between 0 and
0180 as it will be explained in the next section). This is very convenient
as we are able to display these channels as gray-level images.

The value channel of the castle image will then look as follows:

The same image in the saturation channel will look as follows:



Finally, the image with the hue channel is as follows:



These images are interpreted in the next section.

How it works…
The hue/saturation/value color space has been introduced because this
representation corresponds to the way humans tend to naturally organize
colors. Indeed, humans prefer to describe colors with intuitive attributes
such as tint, colorfulness, and brightness. These three attributes are the
basis of most phenomenal color spaces. Hue designates the dominant
color; the names that we give to colors (such as green, yellow, blue, and
red) correspond to the different hue values. Saturation tells us how
vivid the color is; pastel colors have low saturation, while the colors of
the rainbow are highly saturated. Finally, brightness is a subjective
attribute that refers to the luminosity of a color. Other phenomenal color
spaces use the concept of color value or color lightness as a way to
characterize the relative color intensity.

These color components try to mimic the intuitive human perception of
colors. In consequence, there is no standard definition for them. In the
literature, you will find several different definitions and formulae of the
hue, saturation, and brightness. OpenCV proposes two implementations
of phenomenal color spaces: the HSV and the HLS color spaces. The
conversion formulas are slightly different, but they give very similar
results.

The value component is probably the easiest to interpret. In the OpenCV
implementation of the HSV space, it is defined as the maximum value of
the three BGR components. It is a very simplistic implementation of the
brightness concept. For a definition of brightness that matches the
human visual system better, you should use the L channel of the
perceptually uniform L*a*b* and L*u*v* color spaces. For example,
the L channel takes into account the fact that a green color appears to
human brighter than, for instance, a blue color of same intensity.

To compute the saturation, OpenCV uses a formula based on the
minimum and maximum values of the BGR components:



The idea is that a grayscale color in which the three R, G, and B
components are all equal will correspond to a perfectly desaturated
color; therefore, it will have a saturation value of 0. Saturation is a value
between 0 and 1.0. For 8-bit images, saturation is rescaled to a value
between 0 and 255, and when displayed as a gray-level image, brighter
areas correspond to the colors that have a higher saturation color.

For example, from the saturation image in the previous section, it can be
seen that the blue of the water is more saturated than the light blue
pastel color of the sky, as expected. The different shades of gray have,
by definition, a saturation value equal to zero (because, in this case, all
three BGR components are equal). This can be observed on the different
roofs of the castle, which are made of a dark gray stone. Finally, in the
saturation image, you may have noticed some white spots located
in areas that correspond to very dark regions of the original image.
These are a consequence of the used definition for saturation. Indeed,
because saturation measures only the relative difference between the
maximum and minimum BGR values, a triplet such as (1,0,0) gives a
perfect saturation of 1.0, even if this color would be seen as black.
Consequently, the saturation values measured in dark regions are
unreliable and should not be considered.

The hue of a color is generally represented by an angle value between 0
and 360, with the red color at 0 degrees. In the case of an 8-bit image,
OpenCV divides this angle by two to fit within the 1-byte range.
Therefore, each hue value corresponds to a given color tint independent
of its brightness and saturation. For example, both the sky and the water
have the same hue value, approximately 200 degrees (intensity, 100),
which corresponds to the blue shade; the green color of the trees in the
background has a hue of around 90 degrees. It is important to note that



hue is less reliable when evaluated for colors that have a very low
saturation.

The HSB color space is often represented by a cone, where each point
inside corresponds to a particular color. The angular position
corresponds to the hue of the color, the saturation is the distance from
the central axis, and the brightness is given by the height. The tip of the
cone corresponds to the black color for which the hue and saturation are
undefined:

We can also generate an artificial image that will illustrate the different
hue/saturation combinations.

    cv::Mat hs(128, 360, CV_8UC3);   
    for (int h = 0; h < 360; h++) { 
      for (int s = 0; s < 128; s++) { 
        hs.at<cv::Vec3b>(s, h)[0] = h/2;    // all hue angles 
        // from high saturation to low 
        hs.at<cv::Vec3b>(s, h)[1] = 255-s*2; 
        hs.at<cv::Vec3b>(s, h)[2] = 255;    // constant value 
      }       
    }



The columns of the following screenshot show the different possible
hues (from 0 to 180), while the different lines illustrate the effect of
saturation; the top part of the image shows fully saturated colors while
the bottom part corresponds to unsaturated colors. A brightness value of
255 has been attributed to all the displayed colors:

Interesting effects can be created by playing with the HSV values.
Several color effects that can be created using photo editing software
are accomplished from this color space. For example, you may decide to
modify an image by assigning a constant brightness to all the pixels of an
image without changing the hue and saturation. This can be done as
follows:

    // convert into HSV space 
    cv::Mat hsv; 
    cv::cvtColor(image, hsv, CV_BGR2HSV); 
    // split the 3 channels into 3 images 
    std::vector<cv::Mat> channels; 
    cv::split(hsv,channels); 
    // Value channel will be 255 for all pixels 
    channels[2]= 255; 
    // merge back the channels 
    cv::merge(channels,hsv); 
    // reconvert to BGR 
    cv::Mat newImage; 
    cv::cvtColor(hsv,newImage,CV_HSV2BGR); 

This gives the following image, which now looks like a drawing.



There's more…
The HSV color space can also be very convenient to use when you want
to look for objects of specific colors.

Using colors for detection - skin tone detection

Color information can be very useful for the initial detection of specific
objects. For example, the detection of road signs in a driver-assistance
application could rely on the colors of standard signs in order to quickly
identify potential road sign candidates. The detection of skin color is
another example in which the detected skin regions could be used as an
indicator of the presence of a human in an image; this approach is very
often used in gesture recognition where skin tone detection is used to
detect hand positions.

In general, to detect an object using color, you first need to collect a
large database of image samples that contain the object captured from
different viewing conditions. These will be used to define the parameters



of your classifier. You also need to select the color representation that
you will use for classification. For skin tone detection, many studies
have shown that skin color from the diverse ethnical groups clusters well
in the hue/saturation space. For this reason, we will simply use the hue
and saturation values to identify the skin tones in the following image:

We have defined a function that classifies the pixels of an image as skin
or non-skin simply based on an interval of values (the minimum and
maximum hue, and the minimum and maximum saturation):

    void detectHScolor(const cv::Mat& image,  // input image 
               double minHue, double maxHue,  // Hue interval 
               double minSat, double maxSat,  // saturation 
interval 
               cv::Mat& mask) {               // output mask 
 
      // convert into HSV space 
      cv::Mat hsv; 
      cv::cvtColor(image, hsv, CV_BGR2HSV); 
 
      // split the 3 channels into 3 images 
      std::vector<cv::Mat> channels; 
      cv::split(hsv, channels); 
      // channels[0] is the Hue 
      // channels[1] is the Saturation 
      // channels[2] is the Value 



 
      // Hue masking 
      cv::Mat mask1; // below maxHue 
      cv::threshold(channels[0], mask1, maxHue, 255,
                    cv::THRESH_BINARY_INV); 
      cv::Mat mask2; // over minHue 
      cv::threshold(channels[0], mask2, minHue, 255, 
cv::THRESH_BINARY); 
 
      cv::Mat hueMask; // hue mask 
      if (minHue < maxHue) 
        hueMask = mask1 & mask2; 
      else // if interval crosses the zero-degree axis 
        hueMask = mask1 | mask2; 
 
      // Saturation masking 
      // between minSat and maxSat 
      cv::Mat satMask; // saturation mask 
      cv::inRange(channels[1], minSat, maxSat, satMask); 
 
      // combined mask 
      mask = hueMask & satMask; 
    }

Having a large set of skin (and non-skin) samples at our disposal, we
could have used a probabilistic approach in which the likelihood of
observing a given color in the skin class versus that of observing the
same color in the non-skin class would have been estimated. Here, we
empirically define an acceptable hue/saturation interval for our test
image (remember that the 8-bit version of the hue goes from 0 to 180
and saturation goes from 0 to 255):

    // detect skin tone 
    cv::Mat mask; 
    detectHScolor(image, 160, 10,  // hue from 320 degrees to 
20 degrees  
                  25, 166,         // saturation from ~0.1 to 
0.65 
                  mask); 
 
    // show masked image 
    cv::Mat detected(image.size(), CV_8UC3, cv::Scalar(0, 0, 
0)); 
    image.copyTo(detected, mask); 



The following detection image is obtained as the result:

Note that, for simplicity, we have not considered color brightness in the
detection. In practice, excluding brighter colors would have reduced the
possibility of wrongly detecting a bright reddish colors as skin.
Obviously, a reliable and accurate detection of skin color would require
a much more elaborate analysis. It is also very difficult to guarantee
good detection across different images because many factors influence
color rendering in photography, such as white balancing and lighting
conditions. Nevertheless, as shown here, using hue/saturation
information as an initial detector gives us acceptable results.

See also
Chapter 5, Transforming Images with Morphological Operations,
shows you how to post-process binary images obtained from



detection
The article, A survey of skin-color modeling and detection methods,
Pattern Recognition, vol. 40, 2007, P. Kakumanu, S. Makrogiannis,
N. Bourbakis, reviews different methods of skin detection



Chapter 4. Counting the Pixels
with Histograms
In this chapter, we will cover the following recipes:

Computing an image histogram
Applying look-up tables to modify the image's appearance
Equalizing the image histogram
Backprojecting a histogram to detect specific image content
Using the mean shift algorithm to find an object
Retrieving similar images using the histogram comparison
Counting pixels with integral images

Introduction
An image is composed of pixels of different values (colors). The
distribution of pixel values across an image constitutes an important
characteristic of that image. This chapter introduces the concept of
image histograms. You will learn how to compute a histogram and how
to use it to modify an image's appearance. Histograms can also be used
to characterize an image's content and detect specific objects or textures
in an image. Some of these techniques will be presented in this chapter.



Computing an image histogram
An image is made of pixels that have different values. For example, in a
1-channel gray-level image, each pixel has an integer value between 0
(black) and 255 (white). Depending on the picture content, you will find
different amounts of each gray shade laid out inside the image.

A histogram is a simple table that gives you the number of pixels that
have a given value in an image (or sometimes, a set of images). The
histogram of a gray-level image will, therefore, have 256 entries (or
bins). Bin 0 gives you the number of pixels that have the value 0, bin 1
gives you the number of pixels that have the value 1, and so on.
Obviously, if you sum all of the entries of a histogram, you should get
the total number of pixels. Histograms can also be normalized so that the
sum of the bins equals 1. In this case, each bin gives you the percentage
of pixels that have this specific value in the image.

Getting ready
The first three recipes of this chapter will use the following image:

How to do it...
Computing a histogram with OpenCV can be easily done by using the



cv::calcHist function. This is a general function that can compute the
histogram of multiple channel images of any pixel value type and range.
Here, we will make this one simpler to use by specializing a class for the
case of 1-channel gray-level images. For other types of image, you can
always directly use the cv::calcHist function, which offers you all the
flexibility required. The next section will explain each of its parameters.

For now, the initialization of our specialized class looks as follows:

    //To create histograms of gray-level images 
    class Histogram1D { 
 
      private: 
        int histSize[1];          // number of bins in 
histogram 
        float hranges[2];         // range of values 
        const float* ranges[1];   // pointer to the value 
ranges 
        int channels[1];          // channel number to be 
examined 
 
      public: 
      Histogram1D() { 
 
        // Prepare default arguments for 1D histogram 
        histSize[0]= 256;        // 256 bins 
        hranges[0]= 0.0;         // from 0 (inclusive) 
        hranges[1]= 256.0;       // to 256 (exclusive) 
        ranges[0]= hranges;  
        channels[0]= 0;          // we look at channel 0 
      }

With the defined member variables, computing a gray-level histogram
can then be accomplished using the following method:

    // Computes the 1D histogram. 
    cv::Mat getHistogram(const cv::Mat &image) { 
 
      cv::Mat hist; 
      // Compute 1D histogram with calcHist 
      cv::calcHist(&image, 1, // histogram of 1 image only 
                   channels,  // the channel used 
                   cv::Mat(), // no mask is used 
                   hist,      // the resulting histogram 



                   1,         // it is a 1D histogram 
                   histSize,  // number of bins 
                   ranges     // pixel value range 
      ); 
 
      return hist; 
    } 

Now, your program simply needs to open an image, create a
Histogram1D instance, and call the getHistogram method:

    // Read input image 
    cv::Mat image= cv::imread("group.jpg", 0); // open in b&w 
 
    // The histogram object 
    Histogram1D h; 
 
    // Compute the histogram 
    cv::Mat histo= h.getHistogram(image); 

The histo object here is a simple one-dimensional array with 256
entries. Therefore, you can read each bin by simply looping over this
array:

    // Loop over each bin 
    for (int i=0; i<256; i++) 
      cout << "Value " << i << " = " 
           <<histo.at<float>(i) << endl; 

With the image shown at the start of this chapter, some of the displayed
values would read as follows:

    Value 7 = 159 
    Value 8 = 208 
    Value 9 = 271 
    Value 10 = 288 
    Value 11 = 340 
    Value 12 = 418 
    Value 13 = 432 
    Value 14 = 472 
    Value 15 = 525 

It is obviously difficult to extract any intuitive meaning from this
sequence of values. For this reason, it is often convenient to display a



histogram as a function, for example, using bar graphs. The following
methods create such a graph:

    // Computes the 1D histogram and returns an image of it. 
    cv::Mat getHistogramImage(const cv::Mat &image, int zoom=1) 
{ 
 
      // Compute histogram first 
      cv::Mat hist= getHistogram(image); 
      // Creates image 
      return getImageOfHistogram(hist, zoom); 
    } 
 
    // Create an image representing a histogram (static method)  
    static cv::Mat getImageOfHistogram (const cv::Mat &hist, 
int zoom) { 
      // Get min and max bin values 
      double maxVal = 0; 
      double minVal = 0; 
      cv::minMaxLoc(hist, &minVal, &maxVal, 0, 0); 
 
      // get histogram size 
      int histSize = hist.rows; 
 
      // Square image on which to display histogram 
      cv::Mat histImg(histSize*zoom, histSize*zoom,
                      CV_8U, cv::Scalar(255)); 
 
      // set highest point at 90% of nbins (i.e. image height) 
      int hpt = static_cast<int>(0.9*histSize); 
 
      // Draw vertical line for each bin  
      for (int h = 0; h < histSize; h++) { 
 
        float binVal = hist.at<float>(h); 
        if (binVal>0) { 
          int intensity = static_cast<int>(binVal*hpt / 
maxVal); 
          cv::line(histImg, cv::Point(h*zoom, histSize*zoom),
                   cv::Point(h*zoom, (histSize - 
intensity)*zoom),
                   cv::Scalar(0), zoom); 
        } 
      } 
 
      return histImg; 



    }

Using the getImageOfHistogram method, you can obtain an image of the
histogram function in the form of a bar graph that is drawn using lines:

    //Display a histogram as an image 
    cv::namedWindow("Histogram"); 
    cv::imshow("Histogram", h.getHistogramImage(image)); 

The result is the following image:

From the preceding histogram, it can be seen that the image exhibits a
large peak of mid-gray level values and a good quantity of darker pixels.
Coincidentally, these two groups mostly correspond to, respectively, the
background and foreground of the image. This can be verified by
thresholding the image at the transition between these two groups. A
convenient OpenCV function can be used for this, namely the
cv::threshold function, which was introduced in the previous chapter.
Here, to create our binary image, we threshold the image at the
minimum value just before it increases toward the high peak of the
histogram (gray value 70):

    cv::Mat thresholded;                 // output binary image  
    cv::threshold(image,thresholded,70,  // threshold value 
                  255,                   // value assigned to  
                                         // pixels over 



threshold value 
                  cv::THRESH_BINARY);    // thresholding type 

The resulting binary image clearly shows you the
background/foreground segmentation:

How it works...
The cv::calcHist function has many parameters to permit its use in
many contexts, which are as follows:

    void calcHist(const Mat*images, // source images 
          int nimages,          // number of source images 
(usually 1) 
          const int*channels,   // list the channels to be used  
          InputArray mask,      // input mask (pixels to 
consider) 
          OutputArray hist,     // output histogram 
          int dims,             // histogram dimension (number 
of channels) 
          const int*histSize,   // number of bins in each 
dimension 
          const float**ranges,  // range of each dimension 



          bool uniform=true,    // true if equally spaced bins 
          bool accumulate=false) // to cumulate over several 
calls 

Most of the time, your histogram will be one of a single 1-channel or 3-
channel image. However, the function allows you to specify a multiple-
channel image distributed over several images (that is, several cv::Mat).
This is why an array of input images is the first parameter of this
function. The sixth parameter, dims, specifies the dimensionality of the
histogram, for example, 1 for a 1D histogram. Even if you are analyzing
a multichannel image, you do not have to use all its channels in the
computation of the histogram. The channels to be considered are listed
in the channel array that has the specified dimensionality. In our class
implementation, this single channel is channel 0 by default. The
histogram itself is described by the number of bins in each dimension
(this is the histSize array of integers) and by the minimum (inclusive)
and maximum (exclusive) values in each dimension (given by the ranges
array of 2-element arrays). It is also possible to define a non-uniform
histogram (the second-last parameter would be set to false in that case),
in which case, you need to specify the limits of each bin.

As with many OpenCV functions, a mask can be specified, indicating
which pixels you want to include in the count (all pixels for which the
mask value is 0 are then ignored). Two additional parameters can be
specified, both of which are Boolean values. The first one indicates
whether the histogram is uniform or not (true is the default). The second
allows you to accumulate the result of several histogram computations.
If this last parameter is true, then the pixel count of the image will be
added to the current values found in the input histogram. This is useful
when you want to compute the histogram of a group of images.

The resulting histogram is stored in a cv::Mat instance. Indeed, the
cv::Mat class can be used to manipulate general N-dimensional
matrices. Recall from Chapter 2 , Manipulating Pixels, that this class
has defined the at method for matrices of dimension 1, 2, and 3. This is
why we were able to write the following code when accessing each bin
of the 1D histogram in the getHistogramImage method:



    float binVal = hist.at<float>(h); 

Note that the values in the histogram are stored as float values.

There's more...
The Histogram1D class presented in this recipe has simplified the
cv::calcHist function by restricting it to a 1D histogram. This is useful
for gray-level images, but what about color images?

Computing histograms of color images

Using the same cv::calcHist function, we can compute histograms of
multichannel images. For example, a class that computes histograms of
color BGR images can be defined as follows:

    class ColorHistogram { 
 
      private: 
        int histSize[3];        // size of each dimension 
        float hranges[2];       // range of values (same for 
the 3 dimensions) 
        const float* ranges[3]; // ranges for each dimension 
        int channels[3];        // channel to be considered 
 
      public: 
      ColorHistogram() { 
 
        // Prepare default arguments for a color histogram 
        // each dimension has equal size and range 
        histSize[0]= histSize[1]= histSize[2]= 256; 
        hranges[0]= 0.0;    // BRG range from 0 to 256 
        hranges[1]= 256.0; 
        ranges[0]= hranges; // in this class,   
        ranges[1]= hranges; // all channels have the same range  
        ranges[2]= hranges; 
        channels[0]= 0;     // the three channels: B 
        channels[1]= 1;     // G 
        channels[2]= 2;     // R 
      }

In this case, the histogram will be three-dimensional. Therefore, we need
to specify a range for each of the three dimensions. In the case of our



BGR image, the three channels have the same [0,255] range. With the
arguments thus prepared, the color histogram is computed by the
following method:

    //Computes the histogram. 
    cv::Mat getHistogram(const cv::Mat &image) { 
      cv::Mat hist; 
 
      //Compute histogram 
      cv::calcHist(&image, 1,  // histogram of 1 image only 
                   channels,   // the channel used 
                   cv::Mat(),  // no mask is used 
                   hist,       // the resulting histogram 
                   3,          // it is a 3D histogram 
                   histSize,   // number of bins 
                   ranges      // pixel value range 
      ); 
 
      return hist; 
    }

A three-dimensional cv::Mat instance is returned. When a histogram of
256 bins is selected, this matrix has (256)^3 elements, which represents
more than 16 million entries. In many applications, it would be better to
reduce the number of bins in the computation of the histogram. It is also
possible to use the cv::SparseMat data structure, which is designed to
represent large sparse matrices (that is, matrices with very few non-zero
elements) without consuming too much memory. The cv::calcHist
function has a version that returns one such matrix. It is, therefore,
simple to modify the previous method in order to use cv::SparseMatrix:

    //Computes the histogram. 
    cv::SparseMat getSparseHistogram(const cv::Mat &image) { 
 
      cv::SparseMat hist(3,        // number of dimensions 
                    histSize,      // size of each dimension 
                    CV_32F); 
 
      //Compute histogram 
      cv::calcHist(&image, 1, // histogram of 1 image only 
                   channels,  // the channel used 
                   cv::Mat(), // no mask is used 
                   hist,      // the resulting histogram 



                   3,         // it is a 3D histogram 
                   histSize,  // number of bins 
                   ranges     // pixel value range 
      ); 
      return hist; 
    }

The histogram in this case is three-dimensional, which makes it more
difficult to represent. A possible option to illustrate the color distribution
in an image could be by showing the individual R, G, and B histograms.

See also
The Backprojecting a histogram to detect specific image content
recipe later in this chapter makes use of color histograms in order to
detect specific image content



Applying look-up tables to
modify the image's appearance
Image histograms capture the way a scene is rendered using the
available pixel intensity values. By analyzing the distribution of the pixel
values over an image, it is possible to use this information to modify and
possibly improve an image. This recipe explains how we can use a
simple mapping function, represented by a look-up table, to modify the
pixel values of an image. As we will see, look-up tables are often
produced from histogram distributions.

How to do it...
A look-up table is a simple one-to-one (or many-to-one) function that
defines how pixel values are transformed into new values. It is a 1D
array with, in the case of regular gray-level images, 256 entries. Entry i
of the table gives you the new intensity value of the corresponding gray
level, which is expressed as follows:

    newIntensity= lookup[oldIntensity]; 

  The cv::LUT function in OpenCV applies a look-up table to an image in
order to produce a new image. Since look-up tables are often built from
histograms, we have added this function to our Histogram1D class:

    static cv::Mat applyLookUp(const cv::Mat& image,   // input 
image 
                               const cv::Mat& lookup) {// 1x256 
8U 
      // the output image 
      cv::Mat result; 
 
      // apply lookup table 
      cv::LUT(image,lookup,result); 
      return result; 
    }

How it works...



When a look-up table is applied to an image, it results in a new image in
which the pixel intensity values have been modified as prescribed by the
look-up table. A simple transformation could be defined as follows:

    //Create an image inversion table 
    cv::Mat lut(1,256,CV_8U); // 256x1 matrix 
 
    for (int i=0; i<256; i++) { 
      //0 becomes 255, 1 becomes 254, etc. 
      lut.at<uchar>(i)= 255-i; 
    } 

This transformation simply inverts the pixel intensities, that is, intensity
0 becomes 255, 1 becomes 254, and so on up to 255 that becomes 0.
Applying such a look-up table to an image will produce the negative of
the original image.

With the image in the previous recipe, the result is seen here:

There's more...



Look-up tables are useful for any application in which all pixel
intensities are given a new intensity value. The transformation, however,
has to be global; that is, all pixels of each intensity value must undergo
the same transformation.

Stretching a histogram to improve the image contrast

It is possible to improve an image's contrast by defining a look-up table
that modifies the original image's histogram. For example, if you observe
the histogram of the image shown in the first recipe of this chapter, you
will notice that there are practically no pixels in the image with a value
higher than 200. We can, therefore, stretch the histogram in order to
produce an image with an expanded contrast. To do so, the procedure
uses a percentile threshold that defines the percentage of pixels that can
be assigned the minimum intensity value (0) and the maximum intensity
value (255) in the stretched image.

We must, therefore, find the lowest (imin) and the highest (imax)
intensity values so that we have the required number of pixels below or
above the specified percentile. This is accomplished by the following
loops (where hist is the computed 1D histogram):

    // number of pixels in percentile 
    float number= image.total()*percentile; 
 
    // find left extremity of the histogram 
    int imin = 0; 
    for (float count=0.0; imin < 256; imin++) { 
      // number of pixel at imin and below must be > number 
      if ((count+=hist.at<float>(imin)) >= number) 
        break; 
    } 
 
    // find right extremity of the histogram 
    int imax = 255; 
    for (float count=0.0; imax >= 0; imax--) { 
      // number of pixel at imax and below must be > number 
      if ((count += hist.at<float>(imax)) >= number) 
        break; 
    }



The intensity values can then be remapped so that the imin value is
repositioned at intensity 0 and the imax value is assigned the value of
255. The in-between i intensities are simply linearly remapped, as
follows:

    255.0*(i-imin)/(imax-imin); 

The resulting stretched image with a percentile cut-off of 1% is then as
follows:

The expanded histogram then looks as follows:



Applying a look-up table to color images

In Chapter 2 , Manipulating Pixels, we defined a color-reduction
function that modifies the BGR values of an image in order to reduce
the number of possible colors. We did this by looping through the
image's pixels and applying the color-reduction function to each of them.
In fact, it would be much more efficient to precompute all color
reductions and then modify each pixel by using a look-up table. This is
indeed very easy to accomplish from what we learned in this recipe. The
new color-reduction function would then be written as follows:

    void colorReduce(cv::Mat &image, int div=64) { 
 
      // creating the 1D lookup table 
      cv::Mat lookup(1,256,CV_8U); 
 
      // defining the color reduction lookup 
      for (int i=0; i<256; i++)  
        lookup.at<uchar>(i)= i/div*div + div/2; 
 



      // lookup table applied on all channels 
      cv::LUT(image,lookup,image); 
    }

The color-reduction scheme is correctly applied here because when a
one-dimensional look-up table is applied to a multichannel image, then
the same table is individually applied to all channels. When a look-up
table has more than one dimension, then it must be applied to an image
with the same number of channels.

See also
The next recipe, Equalizing the image histogram, shows you
another way to improve the image contrast



Equalizing the image histogram
In the previous recipe, we showed you how the contrast of an image can
be improved by stretching a histogram so that it occupies the full range
of the available intensity values. This strategy indeed constitutes an easy
fix that can effectively improve the quality of an image. However, in
many cases, the visual deficiency of an image is not that it uses a too-
narrow range of intensities.

Rather, it is that some intensity values are used much more frequently
than others. The histogram shown in the first recipe of this chapter is a
good example of this phenomenon. The middle-gray intensities are
indeed heavily represented, while darker and brighter pixel values are
rather rare. One possible way to improve the quality of an image could
therefore be to make equal use of all available pixel intensities. This is
the idea behind the concept of histogram equalization, that is making
the image histogram as flat as possible.

How to do it...
OpenCV offers an easy-to-use function that performs histogram
equalization. It is called as follows:

    cv::equalizeHist(image,result); 

After applying it on our image, the following image is obtained:



This equalized image has the following histogram:



Of course, the histogram cannot be perfectly flat because the look-up
table is a global many-to-one transformation. However, it can be seen
that the general distribution of the histogram is now more uniform than
the original one.

How it works...
In a perfectly uniform histogram, all bins would have an equal number
of pixels. This implies that 50 percent of the pixels should have an
intensity lower than 128 (the median intensity value), 25 percent should
have an intensity lower than 64, and so on. This observation can be
expressed using the rule that in a uniform histogram, p% of the pixels
must have an intensity value lower than or equal to 255*p%. The rule
used to equalize a histogram is that the mapping of intensity i should be
at the intensity that corresponds to the percentage of pixels that have an
intensity value below i. Therefore, the required look-up table can be
built from the following equation:

    lookup.at<uchar>(i)= static_cast<uchar>
(255.0*p[i]/image.total()); 

Here, p[i] is the number of pixels that have an intensity lower than or
equal to i. The p[i] function is often referred to as a cumulative
histogram, that is it is a histogram that contains the count of pixels lower
than or equal to a given intensity instead of containing the count of
pixels that have a specific intensity value. Recall that image.total()
returns the number of pixels in an image, so p[i]/image.total() is a
percentage of pixels.

Generally, the histogram equalization greatly improves the image's
appearance. However, depending on the visual content, the quality of
the result can vary from image to image.



Backprojecting a histogram to
detect specific image content
A histogram is an important characteristic of an image's content. If you
look at an image area that shows a particular texture or a particular
object, then the histogram of this area can be seen as a function that
gives the probability that a given pixel belongs to this specific texture or
object. In this recipe, you will learn how the concept of histogram
backprojection can be advantageously used to detect specific image
content.

How to do it...
Suppose you have an image and you wish to detect specific content
inside it (for example, in the following image, the clouds in the sky). The
first thing to do is to select a region of interest that contains a sample of
what you are looking for. This region is the one inside the rectangle
drawn on the following test image:



In our program, the region of interest is obtained as follows:

    cv::Mat imageROI; 
    imageROI= image(cv::Rect(216,33,24,30)); // Cloud region 

You then extract the histogram of this ROI. This is easily accomplished
using the Histogram1D class defined in the first recipe of this chapter, as
follows:

    Histogram1D h; 
    cv::Mat hist= h.getHistogram(imageROI); 

By normalizing this histogram, we obtain a function that gives us the
probability that a pixel of a given intensity value belongs to the defined
area, as follows:

    cv::normalize(histogram,histogram,1.0); 

Backprojecting a histogram consists of replacing each pixel value in an
input image with its corresponding probability value read in the
normalized histogram. An OpenCV function performs this task as
follows:

    cv::calcBackProject(&image,
             1,          // one image 
             channels,   // the channels used,  
                         // based on histogram dimension 
             histogram,  // the histogram we are backprojecting  
             result,     // the resulting back projection image  
             ranges,     // the ranges of values 
             255.0       // the scaling factor is chosen  
                         // such that a probability value of 1 
maps to 255 
    ); 

The result is the following probability map. For better readability, we
display the negative of the result image, with probability of belonging
to the reference area ranging from bright (low probability) to dark (high
probability):



If we apply a threshold on this image, we obtain the most probable cloud
pixels:

    cv::threshold(result, result, threshold, 255, 
cv::THRESH_BINARY); 

The result is shown in the following screenshot:



How it works...
The preceding result is disappointing because, in addition to the clouds,
other areas have been wrongly detected as well. It is important to
understand that the probability function has been extracted from a
simple gray-level histogram. Many other pixels in the image share the
same intensities as the cloud pixels, and pixels of the same intensity are
replaced with the same probability value when backprojecting the
histogram. One solution to improve the detection result would be to use
the color information. However, in order to do this, we need to modify
the call to cv::calBackProject. This will be explained in the There's
more... section.

The cv::calBackProject function is similar to the cv::calcHist
function. The values associated with a pixel refer to one bin of a
(potentially multi-dimensional) histogram. But instead of incrementing
the bin count, the cv::calBackProject function assigns to the
corresponding pixel in the output backprojection image the value read in
that bin. The first parameter of this function specifies the input images
(most of the time, only one). You then need to list the channel numbers
you wish to use. The histogram that is passed to the function is, this
time, an input parameter; its dimension should match the one of the
channel list arrays. As with cv::calcHist, the ranges parameter
specifies the bin boundaries of the input histogram in the form of an
array of float arrays, each specifying the range (minimum and maximum
values) of each channel.

The resulting output is an image containing the computed probability
map. Since each pixel is replaced by the value found in the histogram at
the corresponding bin position, the resulting image has values between
0.0 and 1.0 (assuming a normalized histogram has been provided as
input). A last parameter allows you to optionally rescale these values by
multiplying them by a given factor.

There's more...



Let's now see how we can use the color information in the histogram
backprojection algorithm.

Backprojecting color histograms

Multidimensional histograms can also be backprojected onto an image.
Let's define a class that encapsulates the backprojection process. We
first define the required attributes and initialize the data as follows:

    class ContentFinder { 
      private: 
        // histogram parameters 
        float hranges[2]; 
        const float* ranges[3]; 
        int channels[3]; 
        float threshold;         // decision threshold 
        cv::Mat histogram;       // input histogram  
 
      public: 
      ContentFinder() : threshold(0.1f) { 
        // in this class, all channels have the same range 
        ranges[0]= hranges;   
        ranges[1]= hranges;  
        ranges[2]= hranges;  
      }

A threshold attribute used to create the binary map showing the
detection result is introduced. If this parameter is set to a negative value,
the raw probability map will be returned. The input histogram is
normalized (this is, however, not required) as follows:

    // Sets the reference histogram 
    void setHistogram(const cv::Mat& h) { 
      histogram= h; 
      cv::normalize(histogram,histogram,1.0); 
    }

To backproject the histogram, you simply need to specify the image, the
range (we assumed here that all channels have the same range), and the
list of channels used. The find method performs the backprojection.
Two versions of this method are available; the first one that uses the
three channels of the image calls the more general version:



    // Simplified version in which 
    // all channels used, with range [0,256[ by default 
    cv::Mat find(const cv::Mat& image) { 
 
      cv::Mat result; 
      hranges[0]= 0.0;   // default range [0,256[hranges[1]= 
256.0; 
      channels[0]= 0;    // the three channels  
      channels[1]= 1;  
      channels[2]= 2;  
      return find(image, hranges[0], hranges[1], channels); 
    } 
 
    // Finds the pixels belonging to the histogram 
    cv::Mat find(const cv::Mat& image, float minValue, float 
maxValue,
                 int *channels) { 
 
      cv::Mat result; 
      hranges[0]= minValue; 
      hranges[1]= maxValue; 
      // histogram dim matches channel list 
      for (int i=0; i<histogram.dims; i++) 
        this->channels[i]= channels[i]; 
 
      cv::calcBackProject(&image, 1, // we only use one image  
                  channels,    // channels used  
                  histogram,   // the histogram we are using 
                  result,      // the back projection image 
                  ranges,      // the range of values, 
                               // for each dimension 
                  255.0        //the scaling factor is chosen 
such  
                               //that a histogram value of 1 
maps to 255 
      ); 
    } 
 
    // Threshold back projection to obtain a binary image 
    if (threshold>0.0) 
      cv::threshold(result, result, 255.0*threshold,
                    255.0, cv::THRESH_BINARY); 
 
      return result; 
    } 



Let's now use a BGR histogram on the color version of the image we
used previously (see the book's website to see this image in color). This
time, we will try to detect the blue sky area. We will first load the color
image, define the region of interest, and compute the 3D histogram on a
reduced color space, as follows:

    // Load color image 
    ColorHistogram hc; 
    cv::Mat color= cv::imread("waves.jpg"); 
 
    // extract region of interest 
    imageROI= color(cv::Rect(0,0,100,45)); // blue sky area 
 
    // Get 3D color histogram (8 bins per channel) 
    hc.setSize(8); // 8x8x8 
    cv::Mat shist= hc.getHistogram(imageROI); 

Next, you compute the histogram and use the find method to detect the
sky portion of the image, as follows:

    // Create the content finder 
    ContentFinder finder; 
    // set histogram to be back-projected 
    finder.setHistogram(shist); 
    finder.setThreshold(0.05f); 
 
    // Get back-projection of color histogram 
    Cv::Mat result= finder.find(color); 

The result of the detection on the color version of the image in the
previous section is seen here:



The BGR color space is generally not the best one to identify color
objects in an image. Here, to make it more reliable, we reduced the
number of colors before computing the histogram (remember that the
original BGR space counts more than 16 million colors). The histogram
extracted represents the typical color distribution for a sky area. Try to
backproject it on another image. It should also detect the sky portion.
Note that using a histogram built from multiple sky images should
increase the accuracy of this detection.

In this case, computing a sparse histogram would have been better in
terms of memory usage. You should be able to redo this exercise using
cv::SparseMat this time. Also, if you are looking for a bright-colored
object, using the hue channel of the HSV color space would probably be
more efficient. In other cases, the use of the chromaticity components of
a perceptually uniform space (such as L*a*b*) might constitute a better
choice.

See also
The Using the mean shift algorithm to find an object recipe uses
the HSV color space to detect an object in an image. This is one of
the many alternative solutions you can use in the detection of some



image content.
The last two recipes of Chapter 3, Processing the Colors of an
Image, discusses the different color spaces that you could use for
histogram backprojection.



Using the mean shift algorithm to
find an object
The result of a histogram backprojection is a probability map that
expresses the probability that a given piece of image content is found at
a specific image location. Suppose we now know the approximate
location of an object in an image; the probability map can be used to
find the exact location of the object. The most probable location will be
the one that maximizes this probability inside a given window.
Therefore, if we start from an initial location and iteratively move
around in an attempt to increase the local probability measure, it should
be possible to find the exact object location. This is what is
accomplished by the mean shift algorithm.

How to do it...
Suppose we have identified an object of interest here, a baboon's face,
as shown in the following image:



This time, we will describe this object by using the hue channel of the
HSV color space. This means that we need to convert the image into an
HSV one and then extract the hue channel and compute the 1D hue
histogram of the defined ROI. Refer to the following code:

    // Read reference image 
    cv::Mat image= cv::imread("baboon01.jpg"); 
    // Baboon's face ROI 
    cv::Rect rect(110, 45, 35, 45); 
    cv::Mat imageROI= image(rect); 
    // Get the Hue histogram of baboon's face 
    int minSat=65; 
    ColorHistogram hc; 
    cv::Mat colorhist= hc.getHueHistogram(imageROI,minSat); 

As can be seen, the hue histogram is obtained using a convenient
method that we have added to our ColorHistogram class as follows:

    // Computes the 1D Hue histogram  
    // BGR source image is converted to HSV 
    // Pixels with low saturation are ignored 
    cv::Mat getHueHistogram(const cv::Mat &image, int 
minSaturation=0) { 
 
      cv::Mat hist; 
 
      // Convert to HSV colour space 
      cv::Mat hsv; 
      cv::cvtColor(image, hsv, CV_BGR2HSV); 
 
      // Mask to be used (or not) 
      cv::Mat mask; 
      // creating the mask if required 
      if (minSaturation>0) { 
 
        // Spliting the 3 channels into 3 images 
        std::vector<cv::Mat> v; 
        cv::split(hsv,v); 
 
        // Mask out the low saturated pixels 
        cv::threshold(v[1],mask,minSaturation,
                      255, cv::THRESH_BINARY); 
      } 



 
      //Prepare arguments for a 1D hue histogram 
      hranges[0]= 0.0;    // range is from 0 to 180 
      hranges[1]= 180.0; 
      channels[0]= 0;     // the hue channel  
 
      //Compute histogram 
      cv::calcHist(&hsv, 1,  // histogram of 1 image only 
                   channels, //the channel used 
                   mask,     //binary mask 
                   hist,     //the resulting histogram 
                   1,        //it is a 1D histogram 
                   histSize, //number of bins 
                   ranges    //pixel value range 
      ); 
 
      return hist; 
    } 

The resulting histogram is then passed to our ContentFinder class
instance, as follows:

    ContentFinder finder; 
    finder.setHistogram(colorhist); 

Let's now open a second image, where we want to locate the new
baboon's face position. This image needs to be converted to the HSV
space first, and then we backproject the histogram of the first image.
Refer to the following code:

    image= cv::imread("baboon3.jpg"); 
    // Convert to HSV space 
    cv::cvtColor(image, hsv, CV_BGR2HSV); 
    // Get back-projection of hue histogram 
    int ch[1]={0}; 
    finder.setThreshold(-1.0f); // no thresholding 
    cv::Mat result= finder.find(hsv,0.0f,180.0f,ch); 

Now, from an initial rectangular area (that is, the position of the
baboon's face in the initial image), the cv::meanShift algorithm of
OpenCV will update the rect object at the new baboon's face location,
as follows:

    // initial window position 



    cv::Rect rect(110,260,35,40); 
 
    // search object with mean shift 
    cv::TermCriteria criteria( 
               cv::TermCriteria::MAX_ITER | 
cv::TermCriteria::EPS,  
               10, // iterate max 10 times 
               1); // or until the change in centroid position 
is less than 1px 
    cv::meanShift(result,rect,criteria); 

The initial (red) and new (green) face locations are displayed here:

How it works...
In this example, we used the hue component of the HSV color space in
order to characterize the object we were looking for. We made this
choice because the baboon's face has a very distinctive pink color;
consequently, the pixels' hue should make the face easily identifiable.
The first step, therefore, is to convert the image to the HSV color space.



The hue component is the first channel of the resulting image when the
CV_BGR2HSV flag is used. This is an 8-bit component that varies from 0 to
180 (with cv::cvtColor, the converted image is of the same type as the
source image). In order to extract the hue image, the 3-channel HSV
image is split into three 1-channel images using the cv::split function.
The three images are inserted into a std::vector instance, and the hue
image is the first entry of the vector (that is, at index 0).

When using the hue component of a color, it is always important to take
its saturation into account (which is the second entry of the vector).
Indeed, when the saturation of a color is low, the hue information
becomes unstable and unreliable. This is due to the fact that for low-
saturated color, the B, G, and R components are almost equal. This
makes difficult to determine the exact color that is represented.
Consequently, we decided to ignore the hue component of colors with
low saturation. That is, they are not counted in the histogram (using the
minSat, parameter which masks out pixels with saturation below this
threshold in the getHueHistogram method).

The mean shift algorithm is an iterative procedure that locates the local
maxima of a probability function. It does this by finding the centroid, or
weighted mean, of the data point inside a predefined window. The
algorithm then moves the window center to the centroid location and
repeats the procedure until the window center converges to a stable
point. The OpenCV implementation defines two stopping criteria: a
maximum number of iterations (MAX_ITER) and a window center
displacement value below which the position is considered to have
converged to a stable point (EPS). These two criteria are stored in a
cv::TermCriteria instance. The cv::meanShift function returns the
number of iterations that have been performed. Obviously, the quality of
the result depends on the quality of the probability map provided on the
given initial position. Note that here, we used a histogram of colors to
represent an image's appearance; it is also possible to use histograms of
other features to represent the object (for example, a histogram of edge
orientation).

See also



The mean shift algorithm has been largely used for visual tracking.
Chapter 13 , Tracking Visual Motion, will explore the problem of
object tracking in more detail
The mean shift algorithm has been introduced in the article Mean
Shift: A robust approach toward feature space analysis by D.
Comaniciu and P. Meer in IEEE transactions on Pattern Analysis
and Machine Intelligence, volume 24, number 5, May 2002
OpenCV also offers an implementation of the CamShift algorithm,
which is an improved version of the mean shift algorithm in which
the size and the orientation of the window can change



Retrieving similar images using
the histogram comparison
Content-based image retrieval is an important problem in computer
vision. It consists of finding a set of images that present content that is
similar to a given query image. Since we have learned that histograms
constitute an effective way to characterize an image's content, it makes
sense to think that they can be used to solve the content-based image
retrieval problem.

The key here is to be able to measure the similarity between two images
by simply comparing their histograms. A measurement function that will
estimate how different, or how similar, two histograms are will need to
be defined. Various such measures have been proposed in the past, and
OpenCV proposes a few of them in its implementation of the
cv::compareHist function.

How to do it...
In order to compare a reference image with a collection of images and
find the ones that are the most similar to this query image, we created an
ImageComparator class. This class contains a reference to a query image
and an input image, together with their histograms. In addition, since we
will perform the comparison using color histograms, the ColorHistogram
class is used inside our ImageComparator class:

    class ImageComparator { 
 
      private: 
  
      cv::Mat refH;         // reference histogram 
      cv::Mat inputH;       // histogram of input image 
 
      ColorHistogram hist;  // to generate the histograms 
      int nBins;           // number of bins used in each color 
channel 
 



      public: 
      ImageComparator() :nBins(8) { 
 
      } 

To get a reliable similarity measure, the histogram should be computed
over a reduced number of bins. Therefore, the class allows you to
specify the number of bins to be used in each BGR channel. The query
image is specified using an appropriate setter that also computes the
reference histogram, as follows:

    // set and compute histogram of reference image 
    void setReferenceImage(const cv::Mat& image) { 
 
      hist.setSize(nBins); 
      refH= hist.getHistogram(image); 
    } 

Finally, a compare method compares the reference image with a given
input image. The following method returns a score that indicates how
similar the two images are:

    // compare the images using their BGR histograms 
    double compare(const cv::Mat& image) { 
 
      inputH= hist.getHistogram(image); 
 
      // histogram comparison using intersection 
      return cv::compareHist(refH,inputH, 
cv::HISTCMP_INTERSECT); 
    } 

The preceding class can be used to retrieve images that are similar to a
given query image. A reference image is provided to the class instance
as follows:

    ImageComparator c; 
    c.setReferenceImage(image); 

Here, the query image we used is the color version of the beach image
shown in the Backprojecting a histogram to detect specific image
content recipe earlier in the chapter. This image was compared to the



following series of images. The images are shown in order from the most
similar to the least similar:

How it works...
Most histogram comparison measures are based on bin-by-bin
comparisons. This is why it is important to work with a reduced
histogram that will combine neighboring color into the same bin when
measuring the similarity of two color histograms. The call to
cv::compareHist is straightforward. You just input the two histograms
and the function returns the measured distance. The specific
measurement method you want to use is specified using a flag. In the
ImageComparator class, the intersection method is used (with the
cv::HISTCMP_INTERSECT flag). This method simply compares, for each
bin, the two values in each histogram and keeps the minimum one. The
similarity measure, then, is the sum of these minimum values.
Consequently, two images that have histograms with no colors in
common would get an intersection value of 0, while two identical
histograms would get a value that is equal to the total number of pixels.

The other available methods are the Chi-Square measure (the
cv::HISTCMP_CHISQR flag), which sums the normalized square difference



between the bins; the correlation method (the cv::HISTCMP_CORREL flag),
which is based on the normalized cross-correlation operator used in
signal processing to measure the similarity between two signals; and the
Bhattacharyya measure (the cv::HISTCMP_BHATTACHARYYA flag) and
Kullback-Leibler divergence (the cv::HISTCMP_KL_DIV flag), both used
in statistics to estimate the similarity between two probabilistic
distributions.

See also
The OpenCV documentation provides a description of the exact
formulas used in the different histogram comparison measures.
Earth Mover Distance is another popular histogram comparison
method. It is implemented in OpenCV as the cv::EMD function. The
main advantage of this method is that it takes into account the
values found in adjacent bins to evaluate the similarity of two
histograms. It is described in the article The Earth Mover's Distance
as a Metric for Image Retrieval by Y. Rubner, C. Tomasi, and L. J.
Guibas in Int. Journal of Computer Vision, Volume 40, No 2, 2000,
pp. 99-121.



Counting pixels with integral
images
In the previous recipes, we learned that a histogram is computed by
going through all the pixels of an image and cumulating a count of how
often each intensity value occurs in this image. We have also seen that,
sometimes, we are only interested in computing our histogram in a
certain area of the image. In fact, having to accumulate a sum of pixels
inside an image's subregion is a common task in many computer vision
algorithms. Now, suppose you have to compute several such histograms
over multiple regions of interest inside your image. All these
computations could rapidly become very costly. In such a situation,
there is a tool that can drastically improve the efficiency of counting
pixels over image subregions: the integral image.

Integral images have been introduced as an efficient way of summing
pixels in image regions of interest. They are widely used in applications
that involve, for example, computations over sliding windows at multiple
scales.

This recipe will explain the principle behind integral images. Our
objective here is to show how pixels can be summed over a rectangular
region by using only three arithmetic operations. Once we have learned
this concept, the There's more... section of this recipe will show you two
examples where integral images can be advantageously used.

How to do it...
This recipe will play with the following picture, in which a region of
interest showing a girl on her bike is identified:



Integral images are useful when you need to sum pixels over several
image areas. Normally, if you wish to get the sum of all pixels over a
region of interest, you would write the following code:

    // Open image 
    cv::Mat image= cv::imread("bike55.bmp",0); 
    // define image roi (here the girl on bike) 
    int xo=97, yo=112; 
    int width=25, height=30; 
    cv::Mat roi(image,cv::Rect(xo,yo,width,height)); 
    // compute sum 
    // returns a Scalar to work with multi-channel images 
    cv::Scalar sum= cv::sum(roi); 

The cv::sum function simply loops over all the pixels of the region and
accumulates the sum. Using an integral image, this can be achieved
using only three additive operations. However, first you need to
compute the integral image, as follows:

      // compute integral image 
      cv::Mat integralImage; 
      cv::integral(image,integralImage,CV_32S); 



As will be explained in the next section, the same result can be obtained
using this simple arithmetic expression on the computed integral image,
as follows:

    // get sum over an area using three additions/subtractions 
    int sumInt= integralImage.at<int>(yo+height,xo+width)- 
                integralImage.at<int>(yo+height,xo)- 
                integralImage.at<int>(yo,xo+width)+ 
                integralImage.at<int>(yo,xo); 

Both approaches give you the same result. However, computing the
integral image is costly, since you have to loop over all the image pixels.
The key is that once this initial computation is done, you will only need
to add four values to get a sum over a region of interest no matter what
the size of this region is. Integral images then become advantageous to
use when multiple such pixel sums have to be computed over multiple
regions of different sizes.

How it works...
In the previous section, you were introduced to the concept of integral
images through a brief demonstration of the magic behind them, that is,
how they can be used to cheaply compute the sum of pixels inside
rectangular regions. To understand how they work, let's now define what
an integral image is. An integral image is obtained by replacing each
pixel with the value of the sum of all the pixels located inside the upper-
left quadrant delimited by this pixel. The integral image can be
computed by scanning the image once. Indeed, the integral value of a
current pixel is given by the integral value of the pixel above this current
pixel plus the value of the cumulative sum of the current line. The
integral image is therefore a new image containing pixel sums. To avoid
overflows, this image is usually an image of int values (CV_32S) or float
values (CV_32F).

For example, in the following figure, pixel A in this integral image would
contain the sum of the pixels contained inside the upper-left corner area,
which is identified with a double-hatched pattern:



Once the integral image has been computed, any summation over a
rectangular region can be easily obtained through four pixel accesses,
and here is why. Referring to the preceding figure, we can see that the
sum of the pixels inside the region delimited by the pixels A, B, C, and
D can be obtained by reading the integral value at pixel D, from which
you subtract the values of the pixels over B and to the left-hand side of
C. However, by doing so, you have subtracted twice the sum of pixels
located in the upper-left corner of A; this is why you have to re-add the
integral sum at A. Formally, then, the sum of pixels inside A, B, C, and
D is given by A-B-C+D. If we use the cv::Mat method to access pixel
values, this formula translates to the following:

    // window at (xo,yo) of size width by height 
    return (integralImage.at<cv::Vec<T,N>>(yo+height,xo+width)-  
            integralImage.at<cv::Vec<T,N>>(yo+height,xo)- 
            integralImage.at<cv::Vec<T,N>>(yo,xo+width)+ 
            integralImage.at<cv::Vec<T,N>>(yo,xo)); 

The complexity of this computation is, therefore, constant, no matter
what the size of the region of interest is. Note that, for simplicity, we
used the at method of the cv::Mat class, which is not the most efficient
way to access pixel values (see Chapter 2 , Manipulating Pixels). This



aspect will be discussed in the There's more... section of this recipe,
which presents two applications that benefit from the efficiency of the
integral image concept.

There's more...
Integral images are used whenever multiple pixel summations must be
performed. In this section, we will illustrate the use of integral images by
introducing the concept of adaptive thresholding. Integral images are
also useful for the efficient computation of histograms over multiple
windows. This is also explained in this section.

Adaptive thresholding

Applying a threshold on an image in order to create a binary image
could be a good way to extract the meaningful elements of an image.
Suppose that you have the following image of a book:

Since you are interested in analyzing the text in this image, you apply a
threshold to this image as follows:

    // using a fixed threshold  
    cv::Mat binaryFixed; 
    cv::threshold(image,binaryFixed,70,255,cv::THRESH_BINARY); 



You obtain the following result:

In fact, no matter what value you choose for the threshold, in some parts
of the image you get missing text, whereas in other parts, the text
disappears under the shadow. To overcome this problem, one possible
solution consists of using a local threshold that is computed from each
pixel's neighborhood. This strategy is called adaptive thresholding, and
it consists of comparing each pixel with the mean value of the
neighboring pixels. Pixels that clearly differ from their local mean will
then be considered as outliers and will be cut off by the thresholding
process.

Adaptive thresholding, therefore, requires the computation of a local
mean around every pixel. This requires multiple image window
summations that can be computed efficiently through the integral image.
Consequently, the first step is to compute the following integral image:

    // compute integral image 
    cv::Mat iimage; 
    cv::integral(image,iimage,CV_32S); 

Now we can go through all the pixels and compute the mean over a
square neighborhood. We could use our IntegralImage class to do so,



but this one uses the inefficient at method for pixel access. This time,
let's get efficient by looping over the image using the pointers, as we
learned in Chapter 2 , Manipulating Pixels. This loop looks as follows:

    int blockSize= 21;  // size of the neighborhood 
    int threshold=10;   // pixel will be compared 
                        // to (mean-threshold) 
 
    // for each row 
    int halfSize= blockSize/2; 
    for (int j=halfSize; j<nl-halfSize-1; j++) { 
 
      // get the address of row j 
      uchar* data= binary.ptr<uchar>(j); 
      int* idata1= iimage.ptr<int>(j-halfSize); 
      int* idata2= iimage.ptr<int>(j+halfSize+1); 
 
      // for each pixel of a line 
      for (int i=halfSize; i<nc-halfSize-1; i++) { 
    
        // compute sum 
        int sum= (idata2[i+halfSize+1]-data2[i-halfSize]-  
                  idata1[i+halfSize+1]+idata1[i-halfSize]) 
                                      /(blockSize*blockSize); 
 
        // apply adaptive threshold 
        if (data[i]<(sum-threshold)) 
          data[i]= 0; 
        else 
          data[i]=255; 
      } 
    } 

In this example, a neighborhood of size 21x21 is used. To compute each
mean, we need to access the four integral pixels that delimit the square
neighborhood: two located on the line pointed by idata1 and two on the
line pointed by idata2. The current pixel is compared to the computed
mean, from which we subtract a threshold value (here, set to 10); this is
to make sure that rejected pixels clearly differ from their local mean.
The following binary image is then obtained:



Clearly, this is a much better result than the one we got using a fixed
threshold. Adaptive thresholding is a common image-processing
technique. As such, it is also implemented in OpenCV as follows:

    cv::adaptiveThreshold(image,        // input image 
            binaryAdaptive,             // output binary image 
            255,                        // max value for output  
            cv::ADAPTIVE_THRESH_MEAN_C, // method 
            cv::THRESH_BINARY,          // threshold type 
            blockSize,                  // size of the block        
            threshold);                 // threshold used 

This function call produces exactly the same result as the one we
obtained using our integral image. In addition, instead of using the local
mean for thresholding, this function allows you to use a Gaussian
weighted sum (the method flag would be
cv::ADAPTIVE_THRESH_GAUSSIAN_C) in this case. It is interesting to note
that our implementation is slightly faster than the
cv::adaptiveThreshold call.

Finally, it is worth mentioning that we can also write an adaptive
thresholding procedure by using the OpenCV image operators. This
would be done as follows:

    cv::Mat filtered; 



    cv::Mat binaryFiltered;     
    // box filter compute avg of pixels over a rectangular 
region 
    
cv::boxFilter(image,filtered,CV_8U,cv::Size(blockSize,blockSize
)); 
    // check if pixel greater than (mean + threshold) 
    binaryFiltered= image>= (filtered-threshold); 

Image filtering will be covered in Chapter 6 , Filtering the Images.

Visual tracking using histograms

As we learned in the previous recipes, a histogram constitutes a reliable
global representation of an object's appearance. In this section, we will
demonstrate the usefulness of integral images by showing you how we
can locate an object in an image by searching for an image area that
presents a histogram similar to a target object. We accomplished this in
the Using the mean shift algorithm to find an object recipe by using the
concepts of histogram backprojection and local search through mean
shift. This time, we will find our object by performing an explicit search
for regions of similar histograms over the full image.

In the special case where an integral image is used on a binary image
made of 0 and 1 values, the integral sum gives you the number of pixels
that have a value of 1 inside the specified region. We will exploit this
fact in this recipe to compute the histogram of a gray-level image.

The cv::integral function also works for multichannel images. You can
take advantage of this fact to compute histograms of image subregions
using integral images. You simply need to convert your image into a
multichannel image made of binary planes; each of these planes is
associated to a bin of your histogram and shows you which pixels have a
value that falls into this bin. The following function creates such
multiplane images from a gray-level one:

    // convert to a multi-channel image made of binary planes 
    // nPlanes must be a power of 2 
    void convertToBinaryPlanes(const cv::Mat& input,               
                               cv::Mat& output, int nPlanes) { 



 
      // number of bits to mask out 
      int n= 8-static_cast<int>( 
                     log(static_cast<double>
(nPlanes))/log(2.0)); 
      // mask used to eliminate least significant bits 
      uchar mask= 0xFF<<n;  
 
      // create a vector of binary images 
      std::vector<cv::Mat> planes; 
      // reduce to nBins by eliminating least significant bits 
      cv::Mat reduced= input&mask; 
   
      // compute each binary image plane 
      for (int i=0; i<nPlanes; i++) { 
        // 1 for each pixel equals to i<<shift 
        planes.push_back((reduced==(i<<n))&0x1); 
      } 
 
      // create multi-channel image 
      cv::merge(planes,output); 
    } 

The integral image computations can also be encapsulated into one
convenient template class as follows:

    template <typename T, int N> 
    class IntegralImage { 
 
      cv::Mat integralImage; 
 
      public: 
 
      IntegralImage(cv::Mat image) { 
 
       // (costly) computation of the integral image          
       cv::integral(image,integralImage, 
                    cv::DataType<T>::type); 
      } 
 
      // compute sum over sub-regions of any size  
      // from 4 pixel accesses 
      cv::Vec<T,N> operator()(int xo, int yo, int width, int 
height) { 
 
      // window at (xo,yo) of size width by height 



      return (integralImage.at<cv::Vec<T,N>>
(yo+height,xo+width)- 
              integralImage.at<cv::Vec<T,N>>(yo+height,xo)- 
              integralImage.at<cv::Vec<T,N>>(yo,xo+width)+ 
              integralImage.at<cv::Vec<T,N>>(yo,xo)); 
      } 
 
    }; 

We now want to find where the girl on the bicycle, whom we identified
in the previous image, is in a subsequent image. Let's first compute the
histogram of the girl in the original image. We can accomplish this using
the Histogram1D class we built in the recipe Computing an image
histogram of this chapter. Here, we produce a 16-bin histogram as
follows:

    // histogram of 16 bins 
    Histogram1D h; 
    h.setNBins(16); 
    // compute histogram over image roi
    cv::Mat refHistogram=  h.getHistogram(roi); 

The preceding histogram will be used as a referential representation to
locate the target object (the girl on her bike) in a subsequent image.

Suppose that the only information we have is that the girl is moving
more or less horizontally across the image. Since we will have many
histograms to compute at various locations, we compute the integral
image as a preliminary step. Refer to the following code:

    // first create 16-plane binary image 
    cv::Mat planes; 
    convertToBinaryPlanes(secondIimage,planes,16); 
    // then compute integral image 
    IntegralImage<float,16> intHistogram(planes); 

To perform the search, we loop over a range of possible locations and
compare the current histogram with the referential one. Our goal is to
find the location with the most similar histogram. Refer to the following
code:

    double maxSimilarity=0.0; 



    int xbest, ybest; 
    // loop over a horizontal strip around girl 
    // location in initial image 
    for (int y=110; y<120; y++) { 
      for (int x=0; x<secondImage.cols-width; x++) { 
 
        // compute histogram of 16 bins using integral image 
        histogram= intHistogram(x,y,width,height); 
        // compute distance with reference histogram 
        double distance= cv::compareHist(refHistogram,
                                         histogram,
                                         CV_COMP_INTERSECT); 
        //find position of most similar histogram 
        if (distance>maxSimilarity) { 
 
          xbest= x; 
          ybest= y; 
          maxSimilarity= distance; 
        } 
      } 
    } 
    //draw rectangle at best location 
    cv::rectangle(secondImage, 
cv::Rect(xbest,ybest,width,height),0)); 

The location with the most similar histogram is then identified as
followings:



The white rectangle represents the search area. Histograms of all
windows that fit inside this area have been computed. We kept the
window size constant, but it could have been a good strategy to also
search for slightly smaller or larger windows in order to take into
account the eventual changes in scale. Note that in order to limit the
complexity of this computation, the number of bins in the histograms to
be computed should be kept low. In our example, we reduced this to 16
bins. Consequently, plane 0 of this multiplane image contains a binary
image that shows you all pixels that have a value between 0 and 15,
while plane 1 shows you pixels with values between 16 and 31, and so
on.

The search for an object consisted of computing the histograms of all
windows of the given size over a predetermined range of pixels. This
represents the computation of 3200 different histograms that have been
efficiently computed from our integral image. All the histograms
returned by our IntegralImage class are contained in a cv::Vec object
(because of the use of the at method). We then use the cv::compareHist



function to identify the most similar histogram (remember that this
function, like most OpenCV functions, can accept either the cv::Mat or
cv::Vec object through the convenient cv::InputArray generic
parameter type).

See also
Chapter 8 , Detecting Interest Points, will present the SURF
operator that also relies on the use of integral images
The Finding objects and faces with a cascade of Haar features
recipe inChapter 14, Learning from Examples, presents the Haar
features that are computed using integral images
The Applying morphological operators on gray-level images recipe
in Chapter 5,

Transforming Images with Morphological Operations, presents an
operator that can produce results similar to the presented adaptive
thresholding technique
The article Robust Fragments-based Tracking using the Integral
Histogram by A. Adam, E. Rivlin, and I. Shimshoni in the
Proceedings of the International Conference on Computer Vision
and Pattern Recognition, 2006, pp. 798-805, describes an
interesting approach that uses integral images to track objects in an
image sequence



Chapter 5. Transforming Images
with Morphological Operations
In this chapter, we will cover the following recipes:

Eroding and dilating images using morphological filters
Opening and closing images using morphological filters
Applying morphological operators on gray-level images
Segmenting images using watersheds
Extracting distinctive regions using MSER

Introduction
Mathematical morphology is a theory that was developed in the 1960s
for the analysis and processing of discrete images. It defines a series of
operators that transform an image by probing it with a predefined shape
element. The way this shape element intersects the neighborhood of a
pixel determines the result of the operation. This chapter presents the
most important morphological operators. It also explores the problems of
image segmentation and feature detection using algorithms based on
morphological operators.



Eroding and dilating images using
morphological filters
Erosion and dilation are the most fundamental morphological operators.
Therefore, we will present them in this first recipe. The fundamental
component in mathematical morphology is the structuring element. A
structuring element can be simply defined as a configuration of pixels
(the square shape in the following figure) on which an origin is defined
(also called an anchor point). Applying a morphological filter consists
of probing each pixel of the image using this structuring element. When
the origin of the structuring element is aligned with a given pixel, its
intersection with the image defines a set of pixels on which a particular
morphological operation is applied (the nine shaded pixels in the
following figure). In principle, the structuring element can be of any
shape, but most often, a simple shape such as a square, circle, or
diamond with the origin at the center is used. Custom structuring
elements can be useful to emphasize or eliminate regions of particular
shapes.

Getting ready
As morphological filters often work on binary images, we will use the
binary image that was created through thresholding in the first recipe of



the previous chapter. However, since the convention is to have the
foreground objects represented by high (white) pixel values and the
background objects by low (black) pixel values in morphology, we have
negated the image.

In morphological terms, the following image is said to be the
complement of the image that was created in the previous chapter:

How to do it...
Erosion and dilation are implemented in OpenCV as simple functions,
which are cv::erode and cv::dilate. Their usage is straightforward:

    // Read input image 
    cv::Mat image= cv::imread("binary.bmp"); 
 
    // Erode the image 
    // with the default 3x3 structuring element (SE) 
    cv::Mat eroded;  // the destination image 
    cv::erode(image,eroded,cv::Mat()); 
 
    // Dilate the image 
    cv::Mat dilated;  // the destination image 
    cv::dilate(image,dilated,cv::Mat()); 

The two images produced by these function calls are seen in the
following images. The first one shows erosion:



The second image shows the dilation result:

How it works...



As for all morphological filters, the two filters of this recipe operate on
sets of pixels defined by a structuring element. Recall that when applied
to a given pixel, the anchor point of the structuring element is aligned
with this pixel location, and all the pixels that intersect the structuring
element are included in the current set. Erosion replaces the current
pixel with the minimum pixel value found in the defined pixel set.
Dilation is the complementary operator, and it replaces the current pixel
with the maximum pixel value found in the defined pixel set. Since the
input binary image contains only black (value 0) and white (value 255)
pixels, each pixel is replaced by either a white or black pixel.

A good way to picturize the effect of these two operators is to think in
terms of background (black) and foreground (white) objects. With
erosion, if the structuring element when placed at a given pixel location
touches the background (that is, one of the pixels in the intersecting set
is black), then this pixel will be sent to the background. In the case of
dilation, if the structuring element on a background pixel touches a
foreground object, then this pixel will be assigned a white value. This
explains why the size of the objects has been reduced (the shape has
been eroded) in the eroded image while it has been expanded in the
dilated image. Note how some of the small objects (which can be
considered as "noisy" background pixels) have also been completely
eliminated in the eroded image. Similarly, the dilated objects are now
larger, and some of the "holes" inside them have been filled. By default,
OpenCV uses a 3x3 square structuring element. This default structuring
element is obtained when an empty matrix (that is, cv::Mat()) is
specified as the third argument in the function call, as it was done in the
preceding example. You can also specify a structuring element of the
size (and shape) you want by providing a matrix in which the nonzero
element defines the structuring element. For example, to apply a 7x7
structuring element, you would proceed as follows:

    // Erode the image with a larger SE 
    // create a 7x7 mat with containing all 1s 
    cv::Mat element(7,7,CV_8U,cv::Scalar(1)); 
    // erode the image with that SE 
    cv::erode(image,eroded,element); 



The effect is much more destructive in this case, as shown in the
following screenshot:

Another way to obtain a similar result is to repetitively apply the same
structuring element on an image. The two functions have an optional
parameter to specify the number of repetitions:

    // Erode the image 3 times 
    cv::erode(image,eroded,cv::Mat(),cv::Point(-1,-1), 3); 

The cv::Point(-1,-1) argument means that the origin is at the center of
the matrix (default); it can be defined anywhere on the structuring
element. The image that is obtained will be identical to the image we
obtained with the 7x7 structuring element. Indeed, eroding an image
twice is similar to eroding an image with a structuring element dilated
with itself. This also applies to dilation.

Finally, since the notion of background/foreground is arbitrary, we can
make the following observation (which is a fundamental property of the
erosion/dilation operators). Eroding the foreground objects with a
structuring element can be seen as a dilation of the background part of



the image. In other words, we can make the following observations:
The erosion of an image is equivalent to the complement of the
dilation of the complement image
The dilation of an image is equivalent to the complement of the
erosion of the complement image

There's more...
Note that even though we applied our morphological filters on binary
images here, these filters can be applied on gray-level or even color
images with the same definitions. The third recipe of this chapter will
present few morphological operators and their effect on gray-level
images.

Also, note that the OpenCV morphological functions support in-place
processing. This means that you can use the input image as the
destination image, as follows:

    cv::erode(image,image,cv::Mat()); 

OpenCV will create the required temporary image for you for this to
work properly.

See also
The Opening and closing images using morphological filters recipe
applies the erosion and dilation filters in cascade to produce new
operators
The Applying morphological operators on gray-level images recipe
introduces other morphological operators that can usefully be
applied to gray-level images



Opening and closing images using
morphological filters
The previous recipe introduced you to the two fundamental
morphological operators: dilation and erosion. From these, other
operators can be defined. The next two recipes will present some of
them. The opening and closing operators are presented in this recipe.

How to do it...
In order to apply higher-level morphological filters, you need to use the
cv::morphologyEx function with the appropriate function code. For
example, the following call will apply the closing operator:

    // Close the image 
    cv::Mat element5(5,5,CV_8U,cv::Scalar(1)); 
    cv::Mat closed; 
    cv::morphologyEx(image,closed,    // input and output 
images 
                     cv::MORPH_CLOSE, // operator code 
                     element5);       // structuring element 

Note that we used a 5x5 structuring element to make the effect of the
filter more apparent. If we use the binary image of the preceding recipe
as input, we will obtain the following image:



Similarly, applying the morphological opening operator will result in the
following image:



The preceding image is obtained from the following code:

    cv::Mat opened; 
    cv::morphologyEx(image, opened, cv::MORPH_OPEN, element5); 

How it works...
The opening and closing filters are simply defined in terms of the basic
erosion and dilation operations. Closing is defined as the erosion of the
dilation of an image. Opening is defined as the dilation of the erosion of
an image.

Consequently, one can compute the closing of an image using the
following calls:

    // dilate original image 
    cv::dilate(image, result, cv::Mat()); 
    // in-place erosion of the dilated image 
    cv::erode(result, result, cv::Mat()); 

The opening filter can be obtained by interchanging these two function
calls.

While examining the result of the closing filter, it can be seen that the
small holes of the white foreground objects have been filled. The filter
also connects several adjacent objects together. Basically, any holes or
gaps that are too small to completely contain the structuring element will
be eliminated by the filter.

Reciprocally, the opening filter eliminated several small objects from the
scene. All the objects that were too small to contain the structuring
element have been removed.

These filters are often used in object detection. The closing filter
connects the objects erroneously fragmented into smaller pieces
together, while the opening filter removes the small blobs introduced by
the image noise. Therefore, it is advantageous to use them in a sequence.
You can then apply the opening filter before the closing filter if you wish
to prioritize noise filtering, but this could be at the price of eliminating



parts of fragmented objects.

The following image is the result of applying the opening filter before
the closing filter:

Note that applying the same opening (and similarly the closing) operator
on an image several times has no effect. Indeed, as the holes have been
filled by the first opening filter, an additional application of the same
filter will not produce any other changes to the image. In mathematical
terms, these operators are said to be idempotent.

See also
The opening and closing operators are often used to clean up an
image before extracting its connected components as explained in
the Extracting connected components recipe of Chapter 7 ,
Extracting Lines, Contours, and Components



Applying morphological
operators on gray-level images
More advanced morphological operators can be composited by
combining the different basic morphological filters introduced in this
chapter. This recipe will present two morphological operators that, when
applied to gray-level images, can lead to the detection of interesting
image features.

How to do it...
One interesting morphological operator is the morphological gradient
that allows extracting the edges of an image. This one can be accessed
through the cv::morphologyEx function as follows:

    // Get the gradient image using a 3x3 structuring element 
    cv::Mat result; 
    cv::morphologyEx(image, result,
                     cv::MORPH_GRADIENT, cv::Mat()); 

The following result shows the extracted contours of the image's
elements (the resulting image has been inverted for better viewing):



Another useful morphological operator is the top-hat transform. This
operator can be used to extract local small foreground objects in an
image. The effect of this operator can be demonstrated by applying it on
the book image of the last recipe of the previous chapter. This image
shows an unevenly illuminated page of a book. A black top-hat
transform will extract the characters of this page (considered here as the
foreground objects). This operator is also called by using the
cv::morphologyEx function with the appropriate flag:

    // Apply the black top-hat transform using a 7x7 
structuring element 
    cv::Mat element7(7, 7, CV_8U, cv::Scalar(1)); 
    cv::morphologyEx(image, result, cv::MORPH_BLACKHAT, 
element7); 

As it can be seen in the following image, this operator successfully
extracted most of the characters of the original image:



How it works...
A good way to understand the effect of morphological operators on a
gray-level image is to consider an image as a topological relief in which
the gray levels correspond to elevation (or altitude). Under this
perspective, the bright regions correspond to mountains, while the dark
areas correspond to the valleys of the terrain. Also, since edges
correspond to a rapid transition between the dark and bright pixels,
these can be pictured as abrupt cliffs. If an erosion operator is applied
on such a terrain, the net result will be to replace each pixel by the
lowest value in a certain neighborhood, thus reducing its height. As a
result, cliffs will be eroded as the valleys expand. Dilation has the exact
opposite effect; that is, cliffs will gain terrain over the valleys. However,
in both cases, the plateau (that is, the area of constant intensity) will
remain relatively unchanged.



These observations lead to a simple way to detect the edges (or cliffs) of
an image. This can be done by computing the difference between the
dilated and eroded images. Since these two transformed images differ
mostly at the edge locations, the image edges will be emphasized by the
subtraction. This is exactly what the cv::morphologyEx function does
when the cv::MORPH_GRADIENT argument is inputted. Obviously, the
larger the structuring element is, the thicker the detected edges will be.
This edge detection operator is called the Beucher  gradient (the next
chapter will discuss the concept of an image gradient in more detail).
Note that similar results can also be obtained by simply subtracting the
original image from the dilated one or the eroded image from the
original. The resulting edges would simply be thinner.

The top-hat operator is also based on image difference. This time, the
operator uses opening and closing. When a gray-level image is
morphologically opened, its local peaks are eliminated; this is due to the
erosion operator that is applied first. The rest of the image is preserved.
Consequently, the difference between the original image and the opened
one is the set of local peaks. These local peaks are the foreground
objects we want to extract. In the book example of this recipe, the
objective was to extract the characters of the page. Since the foreground
objects are, in this case, black over a white background, we used the
complementary operator, called the black top-hat, which consists of
subtracting the original image from its closing. We used a 7x7 structuring
element in order to have the closing operation big enough to remove the
characters.

See also
The Applying directional filters to detect edges recipe in Chapter 6,
Filtering the Images, describes the other filters that perform edge
detection
The article, The Morphological gradients, J.-F. Rivest, P. Soille,
and S. Beucher, ISET's symposium on electronic imaging science
and technology, SPIE, Feb. 1992, discusses the concept of
morphological gradients in more detail
The article Morphological operator for corner detection, R.



Laganière, Pattern Recognition, volume 31, issue 11, 1998,
presents an operator for the detection of corners using
morphological filters



Segmenting images using
watersheds
The watershed transformation is a popular image processing algorithm
that is used to quickly segment an image into homogenous regions. It
relies on the idea that when the image is seen as a topological relief, the
homogeneous regions correspond to relatively flat basins delimited by
steep edges. With the watershed algorithm, segmentation is achieved by
flooding this relief by gradually increasing the level of water in this one.
As a result of its simplicity, the original version of this algorithm tends to
over-segment the image, which produces multiple small regions. This is
why OpenCV proposes a variant of this algorithm that uses a set of
predefined markers to guide the definition of the image segments.

How to do it...
The watershed segmentation is obtained through the use of the
cv::watershed function. The input for this function is a 32-bit signed
integer marker image in which each nonzero pixel represents a label.
The idea is to mark some pixels of the image that are known to belong to
a given region. From this initial labeling, the watershed algorithm will
determine the regions to which the other pixels belong. In this recipe, we
will first create the marker image as a gray-level image and then convert
it into an image of integers. We have conveniently encapsulated this step
into a WatershedSegmenter class containing a method to specify the
marker image and a method to compute the watershed:

    class WatershedSegmenter { 
 
      private: 
      cv::Mat markers; 
 
      public: 
      void setMarkers(const cv::Mat& markerImage) { 
 
      // Convert to image of ints 
      markerImage.convertTo(markers,CV_32S); 



    } 
 
    cv::Mat process(const cv::Mat &image) { 
 
      // Apply watershed 
      cv::watershed(image,markers); 
      return markers; 
    } 

The way these markers are obtained depends on the application. For
example, some preprocessing steps might have resulted in the
identification of some pixels that belong to an object of interest. The
watershed would then be used to delimitate the complete object from
that initial detection. In this recipe, we will simply use the binary image
used throughout this chapter in order to identify the animals of the
corresponding original image (this is the image shown at the beginning of
Chapter 4 , Counting the Pixels with Histograms). Therefore, from our
binary image, we need to identify pixels that belong to the foreground
(the animals) and pixels that belong to the background (mainly the
grass). Here, we will mark the foreground pixels with the label 255 and
the background pixels with the label 128 (this choice is totally arbitrary;
any label number other than 255 will work). The other pixels, that is, the
ones for which the labeling is unknown, are assigned the value 0.

As of now, the binary image includes white pixels that belong to the
various parts of the image. We will then severely erode this image in
order to retain only the pixels that certainly belong to the foreground
objects:

    // Eliminate noise and smaller objects 
    cv::Mat fg; 
    cv::erode(binary,fg,cv::Mat(),cv::Point(-1,-1),4); 

The result is the following image:



Note that a few pixels that belong to the background forest are still
present. Let's keep them. Therefore, they will be considered to
correspond to an object of interest. Similarly, we can select a few pixels
of the background by a large dilation of the original binary image:

    // Identify image pixels without objects 
    cv::Mat bg; 
    cv::dilate(binary,bg,cv::Mat(),cv::Point(-1,-1),4); 
    cv::threshold(bg,bg,1,128,cv::THRESH_BINARY_INV); 

The resulting black pixels correspond to background pixels. This is why
the thresholding operation assigns the value 128 to these pixels
immediately after the dilation. The following image is obtained:



These images are combined to form the marker image as follows:

    // Create markers image 
    cv::Mat markers(binary.size(),CV_8U,cv::Scalar(0)); 
    markers= fg+bg; 

Note how we used the overloaded operator+ here in order to combine
the images. The following image will be used as the input to the
watershed algorithm:



In this input image, the white areas belong, for sure, to the foreground
objects, the gray areas are a part of the background, and the black areas
have an unknown label. The role of the watershed segmentation is
therefore to assign a label (background/foreground) to the black marked
pixels by establishing the exact border delimitating the foreground
objects from the background. This segmentation is then obtained as
follows:

    // Create watershed segmentation object 
    WatershedSegmenter segmenter; 
 
    // Set markers and process 
    segmenter.setMarkers(markers); 
    segmenter.process(image); 

The marker image is then updated such that each zero pixel is assigned
one of the input labels, while the pixels that belong to the found
boundaries have a value -1. The resulting image of the labels is as
follows:



And the boundary image is as follows:

How it works...



As we did in the preceding recipes, we will use the topological map
analogy in the description of the watershed algorithm. In order to create
watershed segmentation, the idea is to progressively flood the image
starting at level 0. As the level of water progressively increases (to levels
1, 2, 3, and so on), catchment basins are formed. The size of these basins
also gradually increases and, consequently, the water of two different
basins will eventually merge. When this happens, a watershed is created
in order to keep the two basins separated. Once the level of water has
reached its maximum level, the sets of these created basins and
watersheds form the watershed segmentation.

As expected, the flooding process initially creates many small individual
basins. When all of these are merged, many watershed lines are created,
which results in an over-segmented image. To overcome this problem, a
modification to this algorithm has been proposed in which the flooding
process starts from a predefined set of marked pixels. The basins created
from these markers are labeled in accordance with the values assigned
to the initial marks. When two basins having the same label merge, no
watershed is created, thus preventing over-segmentation. This is what
happens when the cv::watershed function is called. The input marker
image is updated to produce the final watershed segmentation. Users can
input a marker image with any number of labels and pixels of unknown
labeling left to value 0. The marker image is chosen to be an image of a
32-bit signed integer in order to be able to define more than 255 labels. It
also allows the special value, -1, to be assigned to the pixels associated
with a watershed.

To facilitate the display of the result, we have introduced two special
methods. The first method returns an image of the labels (with
watersheds at value 0). This is easily done through thresholding, as
follows:

    // Return result in the form of an image 
    cv::Mat getSegmentation() { 
 
      cv::Mat tmp; 
      // all segment with label higher than 255 
      // will be assigned value 255 



      markers.convertTo(tmp,CV_8U); 
 
      return tmp; 
    } 

Similarly, the second method returns an image in which the watershed
lines are assigned the value 0, and the rest of the image is at 255. This
time, the cv::convertTo method is used to achieve this result, as
follows:

    // Return watershed in the form of an image 
    cv::Mat getWatersheds() { 
 
      cv::Mat tmp; 
      // Each pixel p is transformed into 
      // 255p+255 before conversion 
      markers.convertTo(tmp,CV_8U,255,255); 
 
      return tmp; 
    } 

The linear transformation that is applied before the conversion allows
the -1 pixels to be converted into 0 (since -1*255+255=0).

Pixels with a value greater than 255 are assigned the value 255. This is
due to the saturation operation that is applied when signed integers are
converted into unsigned characters.

There's more...
Obviously, the marker image can be obtained in many different ways.
For example, users can be interactively asked to mark the objects of an
image by painting some areas on the objects and the background of a
scene. Alternatively, in an attempt to identify an object located at the
center of an image, one can also simply input an image with the central
area marked with a certain label and the border of the image (where the
background is assumed to be present) marked with another label. This
marker image can be created by drawing thick rectangles on a marker
image as follows:

    // Identify background pixels 



    cv::Mat imageMask(image.size(),CV_8U,cv::Scalar(0)); 
    cv::rectangle(imageMask, cv::Point(5,5),  
                  cv::Point(image.cols-5, image.rows-5),   
                  cv::Scalar(255), 3); 
    // Identify foreground pixels 
    // (in the middle of the image) 
    cv::rectangle(imageMask,
                  cv::Point(image.cols/2-10,image.rows/2-10),
                  cv::Point(image.cols/2+10,image.rows/2+10),
                  cv::Scalar(1), 10); 

If we superimpose this marker image on a test image, we will obtain the
following image:

The following is the resulting watershed image:



See also
The article, The viscous watershed transform, C. Vachier and F.
Meyer, Journal of Mathematical Imaging and Vision, volume 22,
issue 2-3, May 2005, gives more information on the watershed
transform



Extracting distinctive regions
using MSER
In the previous recipe, you learned how an image can be segmented into
regions by gradually flooding it and creating watersheds. The
Maximally Stable External Regions (MSER) algorithm uses the same
immersion analogy in order to extract meaningful regions in an image.
These regions will also be created by flooding the image level by level,
but this time, we will be interested in the basins that remain relatively
stable for a period of time during the immersion process. It will be
observed that these regions correspond to some distinctive parts of the
scene objects pictured in the image.

How to do it...
The basic class to compute the MSER of an image is cv::MSER. This
class is an abstract interface that inherits from the cv::Feature2D class;
in fact, all feature detectors in OpenCV inherit from this super-class. An
instance of the cv::MSER class can be created by using the
create method. Here, we initialize it by specifying a minimum and
maximum size for the detected regions in order to limit the number of
detected features as follows:

    // basic MSER detector 
    cv::Ptr<cv::MSER> ptrMSER=  
     cv::MSER::create(5,     // delta value for local detection  
                      200,   // min acceptable area 
                      2000); // max acceptable area 

Now, the MSER can be obtained by a call to the detectRegions method,
specifying the input image and the appropriate output data structures, as
follows:

    // vector of point sets 
    std::vector<std::vector<cv::Point> > points; 
    // vector of rectangles 
    std::vector<cv::Rect> rects; 



    // detect MSER features 
    ptrMSER->detectRegions(image, points, rects); 

The detection results are provided in the form of a vector of regions
represented by the pixel points that compose each of them and by a
vector of bounding boxes enclosing the regions. In order to visualize the
results, we create a blank image on which we will display the detected
regions in different colors (which are randomly chosen). This is done as
follows:

    // create white image 
    cv::Mat output(image.size(),CV_8UC3); 
    output= cv::Scalar(255,255,255); 
 
    // OpenCV random number generator 
    cv::RNG rng; 
 
    // Display the MSERs in color areas 
    // for each detected feature 
    // reverse order to display the larger MSER first 
    for (std::vector<std::vector<cv::Point> >::reverse_iterator   
             it= points.rbegin(); 
             it!= points.rend(); ++it) { 
 
        // generate a random color 
        cv::Vec3b c(rng.uniform(0,254),  
                    rng.uniform(0,254), rng.uniform(0,254)); 
 
        // for each point in MSER set 
        for (std::vector<cv::Point>::iterator itPts= it-
>begin(); 
                    itPts!= it->end(); ++itPts) { 
 
          // do not overwrite MSER pixels 
          if (output.at<cv::Vec3b>(*itPts)[0]==255) { 
            output.at<cv::Vec3b>(*itPts)= c; 
          } 
        } 
      } 

Note that the MSER form a hierarchy of regions. Therefore, to make all
of these visible, we have chosen not to overwrite the larger regions
when they include smaller ones. We can detect MSERs on the following



image:

The resulting image will be as follows:



Not all regions are visible in this image. Nevertheless, it can be observed
how this operator has been able to extract some meaningful regions (for
example, the building's windows) from this image.

How it works...
MSER uses the same mechanism as the watershed algorithm; that is, it
proceeds by gradually flooding the image from level 0 to level 255. Note
that in image processing, the set of pixels above a certain threshold is
often call a level set. As the level of water increases, you can observe
that the sharply delimitated darker areas form basins that have a
relatively stable shape for a period of time (recall that under the
immersion analogy, the water levels correspond to the intensity levels).
These stable basins are the MSER. These are detected by considering
the connected regions (the basins) at each level and measuring their
stability. This is done by comparing the current area of a region with the
area it previously had when the level was down by a value of delta.
When this relative variation reaches a local minimum, the region is
identified as a MSER. The delta value that is used to measure the
relative stability is the first parameter in the constructor of the cv::MSER
class; its default value is 5. In addition, to be considered, the size of a
region must be within a certain predefined range. The acceptable
minimum and maximum region sizes are the next two parameters of the
constructor. We must also ensure that the MSER is stable (the fourth
parameter), that is, the relative variation of its shape is small enough.
Stable regions can be included in the larger regions (called parent
regions).

To be valid, a parent MSER must be sufficiently different from its child;
this is the diversity criterion, and it is specified by the fifth parameter of
the cv::MSER constructor. In the example used in the previous section,
the default values for these last two parameters were used. (The default
values are 0.25 for the maximum allowable variation of a MSER and
0.2 for the minimum diversity of a parent MSER). As you see, the
detection of MSERs requires the specification of several parameters



which can make it difficult to work well in various contexts.

The first output of the MSER detector is a vector of point sets; each of
these point sets constitutes a region. Since we are generally more
interested in a region as a whole rather than its individual pixel
locations, it is common to represent a MSER by a simple geometrical
shape that enclosed the detected region. The second output of the
detection is therefore a list of bounding boxes. We can therefore show
the result of the detection by drawing all these rectangular bounding
boxes. However, this may represent a large number of rectangles to be
drawn which would make the results difficult to visualize (remember
that we also have regions inside regions which makes the representation
even more cluttered). In the case of our example, let's assume we are
mainly interested in detecting the building's windows. We will therefore
extract all regions that have an upright rectangular shape. This could be
done by comparing the area of each bounding box with the area of the
corresponding detected region. If both have the same value (here, we
check if the ratio of these two areas is greater than 0.6), then we accept
this MSER. The following code implements this test:

    // Extract and display the rectangular MSERs 
    std::vector<cv::Rect>::iterator itr = rects.begin(); 
    std::vector<std::vector<cv::Point> >::iterator itp = 
points.begin(); 
    for (; itr != rects.end(); ++itr, ++itp) { 
      // ratio test 
      if (static_cast<double>(itp->size())/itr->area() > 0.6) 
        cv::rectangle(image, *itr, cv::Scalar(255), 2); 
    } 

The extracted MSERs are then as follows:



Other criteria and representation can also be adopted depending on the
application. The following code tests if the detected region is not too
elongated (based on the aspect ratio of its rotated bounding rectangle)
and then displays them using properly oriented bounding ellipses.

    // Extract and display the elliptic MSERs 
    for (std::vector<std::vector<cv::Point> >::iterator  
              it = points.begin(); 
              it != points.end(); ++it) { 
       // for each point in MSER set 
       for (std::vector<cv::Point>::iterator itPts = it-
>begin(); 
              itPts != it->end(); ++itPts) { 
 
           // Extract bouding rectangles 
          cv::RotatedRect rr = cv::minAreaRect(*it); 
          // check ellipse elongation 
          if (rr.size.height / rr.size.height > 0.6 ||  
              rr.size.height / rr.size.height < 1.6) 



              cv::ellipse(image, rr, cv::Scalar(255), 2); 
      } 
    }   

The result is the following image:

Note how the child and parent MSER are often represented by very
similar ellipses. In some cases, it would then be interesting to apply a
minimum variation criterion on these ellipses in order to eliminate these
repeated representations.

See also
The Computing components' shape descriptors recipe in Chapter 7 ,
Extracting Lines, Contours, and Components, will show you how to
compute other properties of connected point sets
Chapter 8 , Detecting Interest Points, will explain how to use



MSER as an interest point detector



Chapter 6. Filtering the Images
In this chapter, we will cover the following recipes:

Filtering images using low-pass filters
Downsampling images with filters
Filtering images using a median filter
Applying directional filters to detect edges
Computing the Laplacian of an image

Introduction
Filtering is one of the fundamental tasks in signal and image processing.
It is a process aimed at selectively extracting certain aspects of an image
that are considered to convey important information in the context of a
given application. Filtering removes noise in images, extracts interesting
visual features, allows image resampling, and so on. It finds its roots in
the general Signals and Systems theory. We will not cover this theory in
detail here. However, this chapter will present some of the important
concepts related to filtering and will show you how filters can be used in
image-processing applications. But first, let's begin with a brief
explanation of the concept of frequency domain analysis.

When we look at an image, we observe different gray-levels (or colors)
patterns laid out over it. Images differ from each other because they
have different gray-level distributions. However, there is another point
of view under which an image can be analyzed. We can look at the gray-
level variations that are present in an image. Some images contain large
areas of almost constant intensity (for example, a blue sky), while in
other images, the gray-level intensities vary rapidly over the image (for
example, a busy scene crowded with many small objects).

Therefore, observing the frequency of these variations in an image
constitutes another way of characterizing an image. This point of view is
referred to as the frequency domain, while characterizing an image by
observing its gray-level distribution is referred to as the spatial domain.



The frequency domain analysis decomposes an image into its frequency
content from the lowest to the highest frequencies. Areas where the
image intensities vary slowly contain only low frequencies, while high
frequencies are generated by rapid changes in intensities. Several well-
known transformations exist, such as the Fourier transform or the
Cosine transform, which can be used to explicitly show the frequency
content of an image. Note that since an image is a two-dimensional
entity, it is made of both vertical frequencies (variations in the vertical
directions) and horizontal frequencies (variations in the horizontal
directions).

Under the frequency domain analysis framework, a filter is an operation
that amplifies certain bands of frequencies of an image (or leaves them
unchanged) while blocking (or reducing) other image frequency bands.
A low-pass filter is, for instance, a filter that eliminates the high-
frequency components of an image; and reciprocally, a high-pass filter
eliminates the low-frequency components. This chapter will present
some filters that are frequently used in image processing and will explain
their effect when applied on an image.



Filtering images using low-pass
filters
In this first recipe, we will present some very basic low-pass filters. In
the introductory section of this chapter, we learned that the objective of
such filters is to reduce the amplitude of the image variations. One
simple way to achieve this goal is to replace each pixel with the average
value of the pixels around it. By doing this, the rapid intensity variations
will be smoothed out and thus replaced by more gradual transitions.

How to do it...
The objective of the cv::blur function is to smooth an image by
replacing each pixel with the average pixel value computed over a
rectangular neighborhood. This low-pass filter is applied as follows:

cv::blur(image,result, cv::Size(5,5)); // size of the filter 

This kind of filter is also called a box filter. Here, we applied it by using
a 5x5 filter in order to make the filter's effect more visible. Our original
image is the following:



The result of the filter being applied on the preceding image is as
follows:



In some cases, it might be desirable to give more importance to the
closer pixels in the neighborhood of a pixel. Therefore, it is possible to
compute a weighted average in which nearby pixels are assigned a larger
weight than ones that are further away. This can be achieved by using a
weighted scheme that follows a Gaussian function (a "bell-shaped"
function). The cv::GaussianBlur function applies such a filter and it is
called as follows:

cv::GaussianBlur(image, result,  
                 cv::Size(5,5), // size of the filter 
                 1.5);          // parameter controlling 
                                // the shape of the Gaussian

The result is then the following image:

How it works...
A filter is said to be linear if its application corresponds to replacing a



pixel with a weighted sum of neighboring pixels. This is the case of the
mean filter in which a pixel is replaced by the sum of all pixels in a
rectangular neighborhood divided by the size of this neighborhood (to
get the average value). This is like multiplying each neighboring pixel by
1 over the total number of pixels and summing all of these values. The
different weights of a filter can be represented using a matrix that shows
the multiplying factors associated with each pixel position in the
considered neighborhood.

The central element of the matrix corresponds to the pixel on which the
filter is currently applied. Such a matrix is sometimes called a kernel or
a mask. For a 3x3 mean filter, the corresponding kernel would be as
follows:

The cv::boxFilter function filters an image with a square kernel made
of many 1s only. It is similar to the mean filter but without dividing the
result by the number of coefficients.

Applying a linear filter then corresponds to moving a kernel over each
pixel of an image and multiplying each corresponding pixel by its
associated weight. Mathematically, this operation is called a convolution
and can formally be written as follows:



The preceding double summation aligns the current pixel at (x,y) with
the center of the kernel, which is assumed to be at coordinate (0,0).

Looking at the output images produced in this recipe, it can be observed
that the net effect of a low-pass filter is to blur or smooth the image.
This is not surprising since this filter attenuates the high-frequency
components that correspond to the rapid variations visible on an object's
edge.

In the case of a Gaussian filter, the weight associated with a pixel is
proportional to its distance from the central pixel. Recall that the 1D
Gaussian function has the following form:

The normalizing coefficient A is chosen so that the area under the
Gaussian curve equals one. The σ (sigma) value controls the width of
the resulting Gaussian function. The greater this value is, the flatter the
function will be. For example, if we compute the coefficients of the 1D
Gaussian filter for the interval [-4, 0, 4] with σ = 0.5, we obtain the
following coefficients:

[0.0 0.0 0.00026 0.10645 0.78657 0.10645 0.00026 0.0 0.0]

For σ=1.5, these coefficients are as follows:

[0.0076 0.03608 0.1096 0.2135 0.2667 0.2135 0.1096 0.0361 
0.0076 ]



Note that these values were obtained by calling the
cv::getGaussianKernel function with the appropriate σ value:

    cv::Mat gauss= cv::getGaussianKernel(9, sigma,CV_32F); 

The shape of the Gaussian curve for these two σ values is shown in the
following figure. The symmetrical bell shape of the Gaussian function
makes it a good choice for filtering:

As it can be observed, pixels farther from the center have a lower
weight, which makes the pixel-to-pixel transitions smoother. This
contrasts with the flat mean filter where pixels far away can cause
sudden changes in the current mean value. In terms of frequencies, this
implies that the mean filter does not remove all the high frequency
components.

To apply a 2D Gaussian filter on an image, one can simply apply a 1D
Gaussian filter on the image lines first (to filter the horizontal
frequencies), followed by the application of another 1D Gaussian filter
on the image columns (to filter the vertical frequencies). This is possible
because the Gaussian filter is a separable filter (that is, the 2D kernel
can be decomposed into two 1D filters). The cv::sepFilter2D function
can be used to apply a general separable filter. It is also possible to



directly apply a 2D kernel using the cv::filter2D function. In general,
separable filters are faster to compute than non-separable ones because
they require less multiplication operations.

With OpenCV, the Gaussian filter to be applied to an image is specified
by providing both the number of coefficients (the third parameter, which
is an odd number) and the value of σ (the fourth parameter) to
cv::GaussianBlur. You can also simply set the value of σ and let
OpenCV determine the appropriate number of coefficients (you then
input a value of 0 for the filter size). The opposite is also possible, where
you input a size and a value of 0 for σ. The σ value that best fits the
given size will be determined.

See also
The Downsampling images with filters recipe explains how to
reduce the size of an image using low-pass filters.
The There's more... section of the Scanning an image with neighbor
access recipe in Chapter 2, Manipulating Pixels, introduces the
cv::filter2D function. This function lets you apply a linear filter to
an image by inputting the kernel of your choice.



Downsampling images with filters
Images often need to be resized (resampled). The process of reducing
the size of an image is often called downsampling, while increasing its
size is upsampling. The challenge in performing these operations is to
ensure that the visual quality of the image is preserved as much as
possible. To accomplish this objective, low-pass filters are often used;
this recipe explains why.

How to do it...
You might think that you can reduce the size of an image by simply
eliminating some of the columns and rows of the image. Unfortunately,
the resulting image will not look very nice. The following figure
illustrates this fact by showing you a test image that is reduced by a
factor of 4 with respect to its original size by simply keeping 1 of every 4
columns and rows.

Note that to make the defects in this image more apparent, we zoom in
on the image by displaying it with pixels that are four times larger:



Clearly, one can see that the image quality has degraded. For example,
the oblique edges of the castle's roof in the original image now appear as
a staircase on the reduced image. Other jagged distortions are also
visible on the textured parts of the image (the brick walls, for instance).

These undesirable artifacts are caused by a phenomenon called spatial
aliasing that occurs when you try to include high-frequency
components in an image that is too small to contain them. Indeed,
smaller images (that is, images with fewer pixels) cannot represent fine
textures and sharp edges as nicely as higher resolution images (think of
the difference between high-definition TV versus older TV technology).
Since fine details in an image correspond to high frequencies, we need to
remove these higher frequency components in an image before reducing
its size.

We learned in the previous recipe that this can be done through a low-
pass filter. Consequently, to reduce the size of an image by four without
adding annoying artifacts, you must first apply a low-pass filter to the



original image before throwing away columns and rows. This is how you
would do this using OpenCV:

    // first remove high frequency component 
    cv::GaussianBlur(image,image,cv::Size(11,11),2.0); 
    // keep only 1 of every 4 pixels 
    cv::Mat reduced(image.rows/4,image.cols/4,CV_8U); 
    for (int i=0; i<reduced.rows; i++) 
      for (int j=0; j<reduced.cols; j++) 
        reduced.at<uchar>(i,j)= image.at<uchar>(i*4,j*4); 

The resulting image (also displayed with pixel of four times the normal
size) is as follows:

Of course, some of the fine details of the image have been lost, but
globally, the visual quality of the image is better preserved than in the
previous case (looking at this image from far away should convince you
of the relative good quality of the image).

How it works...



In order to avoid undesirable aliasing effect, an image must always be
low-pass filtered before reducing its size. As we explained previously,
the role of the low-pass filter is to eliminate the high-frequency
components that cannot be represented in the reduced image. The
formal theory demonstrating this fact is well established and is often
referred to as the Nyquist-Shannon theorem. In substance, the theory
tells us that if you downsample an image by two, then the bandwidth of
the representable frequencies is also reduced by two.

A special OpenCV function performs image reduction using this
principle. This is the cv::pyrDown function:

    cv::Mat reducedImage;            // to contain reduced 
image 
    cv::pyrDown(image,reducedImage); // reduce image size by 
half 

The preceding function uses a 5x5 Gaussian filter to low-pass the image
before reducing it by a factor of two. The reciprocal cv::pyrUp function
that doubles the size of an image also exists. It is interesting to note that
in this case, the upsampling is done by inserting the 0 values between
every two columns and rows and then by applying the same 5x5
Gaussian filter (but with the coefficients multiplied by four) on the
expanded image. Obviously, if you downsize an image and then upsize
it, you will not recover the exact original image. What was lost during
the downsizing process cannot be recovered. These two functions are
used to create image pyramids. This is a data structure made of stacked
versions of an image at different sizes built for efficient multi-scale
image analysis. The resulting image is as follows:



Here, each level is two times smaller than the previous level, but the
reduction factor can be less, and not necessarily an integer (for example,
1.2). For example, if you want to efficiently detect an object in an
image, the detection can be first accomplished on the small image at the
top of the pyramid, and as you locate the object of interest, you can
refine the search by moving to the lower levels of the pyramid that
contains the higher resolution versions of the image.

Note that there is also a more general cv::resize function that allows
you to specify the size you want for the resulting image. You simply call
it by specifying a new size that could be smaller or larger than the
original image:

    cv::Mat resizedImage;                 // to contain resized 
image 
    cv::resize(image, resizedImage,
               cv::Size(image.cols/4,image.rows/4)); // 1/4 
resizing 

It is also possible to specify resizing in terms of scale factors. In this
case, an empty size instance is given as an argument followed by the
desired scale factors:

    cv::resize(image, resizedImage,  



               cv::Size(), 1.0/4.0, 1.0/4.0); // 1/4 resizing 

A final parameter allows you to select the interpolation method that is to
be used in the resampling process. This is discussed in the following
section.

There's more...
When an image is resized by a factional factor, it becomes necessary to
perform some pixel interpolation in order to produce new pixel values at
locations that fall in between the existing ones. General image
remapping, as discussed in the Remapping an image recipe in  Chapter 2
, Manipulating Pixels, is another situation where pixel interpolation is
required.

Interpolating pixel values

The most basic approach to perform interpolation is to use a nearest
neighbor strategy. The new grid of pixels that must be produced is
placed on top of the existing image, and each new pixel is assigned the
value of its closest pixel in the original image. In the case of image
upsampling (that is, when using a new grid denser than the original one),
this implies that more than one pixel of the new grid will receive its
value from the same original pixel. For example, resizing the reduced
image of the previous section by four using nearest neighbor
interpolation has been done as follows:

    cv::resize(reduced, newImage, cv::Size(), 3, 3, 
cv::INTER_NEAREST); 

In this case, the interpolation corresponds to simply increasing the size
of each pixel by four. A better approach consists of interpolating a new
pixel value by combining the values of several neighboring pixels.
Hence, we can linearly interpolate a pixel value by considering the four
pixels around it, as illustrated by the following figure:



This is done by first vertically interpolating two pixel values to the left-
and right-hand side of the added pixel. Then, these two interpolated
pixels (drawn in gray in the preceding figure) are used to horizontally
interpolate the pixel value at the desired location. This bilinear
interpolation scheme is the default approach used by cv::resize (that
can also be explicitly specified by the cv::INTER_LINEAR flag):

    cv::resize(reduced, newImage, cv::Size(), 4, 4, 
cv::INTER_LINEAR); 

The following is the result:



There are also other approaches that can produce superior results. With
bicubic interpolation, a neighborhood of 4x4 pixels is considered to
perform the interpolation. However, since the approach uses more pixels
(16) and implies the computation of cubic terms, it is slower to compute
than bilinear interpolation.

See also
The There's more... section of the Scanning an image with neighbor
access recipe in Chapter 2, Manipulating Pixels, introduces the
cv::filter2D function. This function lets you apply a linear filter to
an image by inputting the kernel of your choice.
The Detecting scale-invariant features recipe in Chapter 8 ,
Detecting Interest Points, uses image pyramids to detect interest
points in an image.



Filtering images using a median
filter
The first recipe of this chapter introduced the concept of linear filters.
Non-linear filters also exist and can be advantageously used in image
processing. One such filter is the median filter that we present in this
recipe.

Since median filters are particularly useful in order to combat salt-and-
pepper noise (or salt-only, in our case), we will use the image we created
in the first recipe of Chapter 2 , Manipulating Pixels, which is
reproduced here:

How to do it...
The call to the median filtering function is done in a way that is similar
to the other filters:

    cv::medianBlur(image, result, 5);  
    // last parameter is size of the filter 

The resulting image is as follows:



How it works...
Since the median filter is not a linear filter, it cannot be represented by a
kernel matrix, it cannot be applied through a convolution operation (that
is, using the double-summation equation introduced in the first recipe of
this chapter). However, it also operates on a pixel's neighborhood in
order to determine the output pixel value. The pixel and its
neighborhood form a set of values and, as the name suggests, the median
filter will simply compute the median value of this set (the median of a
set is the value at the middle position when the set is sorted). The
current pixel is then replaced with this median value.

This explains why the filter is so efficient in eliminating the salt-and-
pepper noise. Indeed, when an outlier black or white pixel is present in a
given pixel neighborhood, it is never selected as the median value (it is
rather the maximal or minimal value), so it is always replaced by a
neighboring value.



In contrast, a simple mean filter would be greatly affected by such noise,
as can be observed in the following image, which represents the mean
filtered version of our salt-and-pepper corrupted image:

Clearly, the noisy pixels shifted the mean value of neighboring pixels. As
a result, the noise is still visible even if it has been blurred by the mean
filter.

The median filter also has the advantage of preserving the sharpness of
the edges. However, it washes out the textures in uniform regions (for
example, the trees in the background). Because of the visual impact it
has on images, the median filter is often used to create special effects in
photo-editing software tools. You should test it on a color image to see
how it can produce cartoon-like images.



Applying directional filters to
detect edges
The first recipe of this chapter introduced the idea of linear filtering
using kernel matrices. The filters that were used had the effect of
blurring an image by removing or attenuating its high-frequency
components. In this recipe, we will perform the opposite transformation,
that is, amplifying the high-frequency content of an image. As a result,
the high-pass filters introduced in this recipe will perform edge
detection.

How to do it...
The filter that we will use here is called the Sobel filter. It is said to be a
directional filter, because it only affects the vertical or the horizontal
image frequencies depending on which kernel of the filter is used.
OpenCV has a function that applies the Sobel operator on an image. The
horizontal filter is called as follows:

    cv::Sobel(image,     // input 
              sobelX,    // output 
              CV_8U,     // image type 
              1, 0,      // kernel specification 
              3,         // size of the square kernel 
              0.4, 128); // scale and offset 

Vertical filtering is achieved by the following (and very similar to the
horizontal filter) call:

    cv::Sobel(image,     // input 
              sobelY,    // output 
              CV_8U,     // image type 
              0, 1,      // kernel specification 
              3,         // size of the square kernel 
              0.4, 128); // scale and offset 

Several integer parameters are provided to the function, and these will
be explained in the next section. Note that these have been chosen to



produce an 8-bit image (CV_8U) representation of the output.

The result of the horizontal Sobel operator is as follows:

Since, as will be seen in the next section, the kernels of the Sobel
operator contain both positive and negative values, the result of the
Sobel filter is generally computed in a 16-bit signed integer image
(CV_16S). To make the results displayable as an 8-bit image, as shown in
the preceding figure, we used a representation in which a zero value
corresponds to gray-level 128. Negative values are represented by
darker pixels, while positive values are represented by brighter pixels.
The vertical Sobel image is as follows:



If you are familiar with photo-editing software, the preceding images
might remind you of the image emboss effect, and indeed, this image
transformation is generally based on the use of directional filters.

The two results (vertical and horizontal) can then be combined to obtain
the norm of the Sobel filter:

    // Compute norm of Sobel 
    cv::Sobel(image,sobelX,CV_16S,1,0); 
    cv::Sobel(image,sobelY,CV_16S,0,1); 
    cv::Mat sobel; 
    //compute the L1 norm 
    sobel= abs(sobelX)+abs(sobelY); 

The Sobel norm can be conveniently displayed in an image using the
optional rescaling parameter of the convertTo method in order to obtain
an image in which zero values correspond to white, and higher values
are assigned darker gray shades:

    // Find Sobel max value 
    double sobmin, sobmax; 



    cv::minMaxLoc(sobel,&sobmin,&sobmax); 
    // Conversion to 8-bit image 
    // sobelImage = -alpha*sobel + 255 
    cv::Mat sobelImage; 
    sobel.convertTo(sobelImage,CV_8U,-255./sobmax,255); 

The following image is then produced:

Looking at this image, it is now clear why this kind of operator is called
an edge detector. It is then possible to threshold the image in order to
obtain a binary map showing the image contours. The following snippet
creates the image that follows it:

    cv::threshold(sobelImage, sobelThresholded,  
                  threshold, 255, cv::THRESH_BINARY); 



How it works...
The Sobel operator is a classic edge-detection linear filter that is based
on two simple 3x3 kernels that have the following structure:



If we view the image as a two-dimensional function, the Sobel operator
can then be seen as a measure of the variation of the image in the
vertical and horizontal directions. In mathematical terms, this measure is
called a gradient, and it is defined as a 2D vector that is made from the
function's first derivatives in two orthogonal directions:

The Sobel operator gives you an approximation of the image gradient by
differencing pixels in the horizontal and vertical directions. It operates
on a window around the pixel of interest in order to reduce the influence
of noise. The cv::Sobel function computes the result of the convolution
of the image with a Sobel kernel. Its complete specification is as follows:

    cv::Sobel(image,         // input 



              sobel,         // output 
              image_depth,   // image type 
              xorder,yorder, // kernel specification   
              kernel_size,   // size of the square kernel 
              alpha, beta);  // scale and offset 

By using the appropriate arguments, you decide whether you wish to
have the result written in an unsigned character, a signed integer, or a
floating point image. Of course, if the result falls outside of the domain
of the image pixel, saturation will be applied. This is where the last two
parameters can be useful. Before storing the result in the image, the
result can be scaled (multiplied) by alpha and an offset, beta, can be
added.

This is how, in the previous section, we generated an image for which
the Sobel value 0 was represented by the mid-gray level 128. Each Sobel
mask corresponds to a derivative in one direction. Therefore, two
parameters are used to specify the kernel that will be applied, the order
of the derivative in the x, and the y directions. For instance, the
horizontal Sobel kernel is obtained by specifying 1 and 0 for the xorder
and yorder parameters, and the vertical kernel will be generated with 0
and 1. Other combinations are also possible, but these two are the ones
that will be used most often (the case of second-order derivatives is
discussed in the next recipe). Finally, it is also possible to use kernels of
a size larger than 3x3. Values 1, 3, 5, and 7 are possible choices for the
kernel size. A kernel of size 1 corresponds to a 1D Sobel filter (1x3 or
3x1). See the following There's more... section to learn why using a
larger kernel might be useful.

Since the gradient is a 2D vector, it has a norm and a direction. The
norm of the gradient vector tells you what the amplitude of the variation
is, and it is normally computed as a Euclidean norm (also called L2
norm):



However, in image processing, this norm is often computed as the sum
of the absolute values. This is called the L1 norm, and it gives values
that are close to the L2 norm but at a lower computational cost. This is
what we did in this recipe:

    // compute the L1 norm 
    sobel= abs(sobelX)+abs(sobelY); 

The gradient vector always points in the direction of the steepest
variation. For an image, this means that the gradient direction will be
orthogonal to the edge, pointing in the darker to brighter direction.
Gradient angular direction is given by the following formula:

Most often, for edge detection, only the norm is computed. However, if
you require both the norm and the orientation, then the following
OpenCV function can be used:

    // Sobel must be computed in floating points 
    cv::Sobel(image,sobelX,CV_32F,1,0); 
    cv::Sobel(image,sobelY,CV_32F,0,1); 
    // Compute the L2 norm and direction of the gradient 
    cv::Mat norm, dir; 
    // Cartesian to polar transformation to get magnitude and 
angle 
    cv::cartToPolar(sobelX,sobelY,norm,dir); 

By default, the orientation is computed in radians. Just add true as an
additional argument in order to have them computed in degrees.

A binary edge map has been obtained by applying a threshold on the
gradient magnitude. Choosing the right threshold is not an obvious task.
If the threshold value is too low, too many (thick) edges will be retained,
while if we select a more severe (higher) threshold, then broken edges
will be obtained. As an illustration of this trade-off situation, compare
the preceding binary edge map with the following, which is obtained
using a higher threshold value:



One way to get the best of both lower and higher thresholds is to use the
concept of hysteresis thresholding. This will be explained in the next
chapter, where we introduce the Canny operator.

There's more...
Other gradient operators also exist. We present some of them in this
section. It is also possible to apply a Gaussian smoothing filter before
applying a derivative filter. This makes it less sensitive to noise, as
explained in this section.

Gradient operators

To estimate the gradient at a pixel location, the Prewitt  operator
defines the following kernels:



The Roberts operator is based on these simple 2x2 kernels:



The Scharr operator is preferred when more accurate estimates of
the gradient orientation are required:



Note that it is possible to use the Scharr kernels with the cv::Sobel
function by calling it with the CV_SCHARR argument:

    cv::Sobel(image,sobelX,CV_16S,1,0, CV_SCHARR); 

Or, equivalently, you can call the cv::Scharr function:

    cv::Scharr(image,scharrX,CV_16S,1,0,3); 



All of these directional filters try to estimate the first-order derivatives
of the image function. Therefore, high values are obtained at areas
where large intensity variations in the filter direction are present, while
flat areas produce low values. This is why filters that compute image
derivatives are high-pass filters.

Gaussian derivatives

Derivative filters are high-pass filters. As such, they tend to amplify
noise and small highly-contrasted details in an image. In order to reduce
the impact of these higher frequency elements, it is a good practice to
first smooth the image before applying a derivative filter. You might
think that this would be done in two steps, which are smoothing the
image and then computing the derivative. However, a closer look at
these operations reveals that it is possible to combine these two steps
into one with a proper choice of the smoothing kernel. We learned
previously that the convolution of an image with a filter can be
expressed as a summation of terms. Interestingly, a well-known
mathematical property is that the derivative of a summation of terms is
equal to the summation of the terms' derivative.

Consequently, instead of applying the derivative on the result of the
smoothing, it is possible to derive the kernel and then convolute it with
the image; these two operations are then accomplished in a single pass
over the pixels. Since the Gaussian kernel is continuously derivable, it
represents a particularly appropriate choice. This is what is done when
you call the cv::sobel function with different kernel sizes. The function
will compute a Gaussian derivative kernel with different σ values. As an
example, if we select the 7x7 Sobel filter (that is, kernel_size=7) in the
x direction, the following result is obtained:



If you compare this image with the one shown earlier, it can be seen that
many fine details have been removed, giving them more emphasis on the
more significant edges. Note that we now have a band-pass filter, some
higher frequencies being removed by the Gaussian filter and the lower
frequencies being removed by the Sobel filter.

See also
The Detecting image contours with the Canny operator recipe in
Chapter 7 , Extracting Lines, Contours, and Components, shows
you how to obtain a binary edge map using two different threshold
values



Computing the Laplacian of an
image
The Laplacian is another high-pass linear filter that is based on the
computation of the image derivatives. As it will be explained, it
computes second-order derivatives to measure the curvature of the
image function.

How to do it...
The OpenCV function, cv::Laplacian, computes the Laplacian of an
image. It is very similar to the cv::Sobel function. In fact, it uses the
same basic function, cv::getDerivKernels, in order to obtain its kernel
matrix. The only difference is that there are no derivative order
parameters since these ones are, by definition, second order derivatives.

For this operator, we will create a simple class that will encapsulate
some useful operations related to the Laplacian. The basic attributes and
methods are as follows:

    class LaplacianZC { 
 
      private: 
      // laplacian 
      cv::Mat laplace; 
      // Aperture size of the laplacian kernel 
      int aperture; 
 
      public: 
 
      LaplacianZC() : aperture(3) {} 
 
      // Set the aperture size of the kernel 
      void setAperture(int a) { 
        aperture= a; 
      } 
 
      // Compute the floating point Laplacian 
      cv::Mat computeLaplacian(const cv::Mat& image) { 



 
        // Compute Laplacian 
        cv::Laplacian(image,laplace,CV_32F,aperture); 
        return laplace; 
    } 

The computation of the Laplacian is done here on a floating point image.
To get an image of the result, we perform a rescaling, as shown in the
previous recipe. This rescaling is based on the Laplacian maximum
absolute value, where value 0 is assigned gray-level 128. A method of
our class allows the following image representation to be obtained:

    // Get the Laplacian result in 8-bit image 
    // zero corresponds to gray level 128 
    // if no scale is provided, then the max value will be 
    // scaled to intensity 255 
    // You must call computeLaplacian before calling this 
    cv::Mat getLaplacianImage(double scale=-1.0) { 
      if (scale<0) { 
        double lapmin, lapmax; 
        // get min and max laplacian values 
        cv::minMaxLoc(laplace,&lapmin,&lapmax); 
        // scale the laplacian to 127 
        scale= 127/ std::max(-lapmin,lapmax); 
      } 
   
      // produce gray-level image 
      cv::Mat laplaceImage; 
      laplace.convertTo(laplaceImage,CV_8U,scale,128); 
      return laplaceImage; 
    } 

Using this class, the Laplacian image computed from a 7x7 kernel is
obtained as follows:

    // Compute Laplacian using LaplacianZC class 
    LaplacianZC laplacian; 
    laplacian.setAperture(7); // 7x7 laplacian 
    cv::Mat flap= laplacian.computeLaplacian(image); 
    laplace= laplacian.getLaplacianImage(); 

The resulting image is shown here:



How it works...
Formally, the Laplacian of a 2D function is defined as the sum of its
second derivatives:

In its simplest form, it can be approximated by the following 3x3 kernel:



As for the Sobel operator, it is also possible to compute the Laplacian
using larger kernels, and since this operator is even more sensitive to
image noise, it is desirable to do so (unless computational efficiency is a
concern). Since these larger kernels are computed using the second
derivatives of the Gaussian function, the corresponding operator is often
called Laplacian of Gaussian (LoG). Note that the kernel values of a
Laplacian always sum up to 0. This guarantees that the Laplacian will be
zero in areas of constant intensities. Indeed, since the Laplacian
measures the curvature of the image function, it should be equal to 0 on
flat areas.

At first glance, the effect of the Laplacian might be difficult to interpret.
From the definition of the kernel, it is clear that any isolated pixel value
(that is, a value that's very different from its neighbors) will be amplified
by the operator. This is a consequence of the operator's high sensitivity
to noise. However, it is more interesting to look at the Laplacian values
around an image edge. The presence of an edge in an image is the result
of a rapid transition between areas of different gray-level intensities.
Following the evolution of the image function along an edge (for
example, caused by a transition from dark to bright), one can observe
that the gray-level ascension necessarily implies a gradual transition



from a positive curvature (when the intensity values start to rise) to a
negative curvature (when the intensity is about to reach its high
plateau). Consequently, a transition between a positive and a negative
Laplacian value (or reciprocally) constitutes a good indicator of the
presence of an edge. Another way to express this fact is to say that
edges will be located at the zero-crossings of the Laplacian function. We
will illustrate this idea by looking at the values of a Laplacian inside a
small window of our test image. We select one that corresponds to an
edge created by the bottom part of the roof of one of the castle's tower.
A white box has been drawn in the following image to show you the
exact location of this region of interest:

The following figure shows the numerical values (divided by 100) of the
Laplacian image (7x7 kernel) inside the selected window:



If, as illustrated, you carefully follow some of the zero-crossings of the
Laplacian (located between pixels of different signs), you obtain a curve
that corresponds some of the edges that is visible in the image window.
In the preceding figure, we drew lines along the zero-crossings that
correspond to the edge of the tower that is visible in the selected image
window. This implies that, in principle, you can even detect the image
edges at sub-pixel accuracy.

Following the zero-crossing curves in a Laplacian image is a delicate
task. However, a simplified algorithm can be used to detect the
approximate zero-crossing locations. This one proceeds by first
thresholding the Laplacian at 0 so that a partition separating the positive
and negative values is obtained. The limits between these two partitions
then correspond to our zero-crossings. Therefore, we use a
morphological operation to extract these contours, that is, we subtract
the dilated image from the Laplacian image (this is the Beucher gradient
presented in the Applying morphological operators on gray-level
images recipe in Chapter 5 , Transforming Images with Morphological
Operations). This algorithm is implemented by the following method,
which generates a binary image of zero-crossings:

    // Get a binary image of the zero-crossings 
    // laplacian image should be CV_32F 
    cv::Mat getZeroCrossings(cv::Mat laplace) { 
      // threshold at 0 



      // negative values in black 
      // positive values in white 
      cv::Mat signImage; 
      cv::threshold(laplace,signImage,0,255,cv::THRESH_BINARY);  
 
      // convert the +/- image into CV_8U 
      cv::Mat binary; 
      signImage.convertTo(binary,CV_8U); 
      // dilate the binary image of +/- regions 
      cv::Mat dilated; 
      cv::dilate(binary,dilated,cv::Mat()); 
 
      // return the zero-crossing contours 
      return dilated-binary; 
    } 

The result is the following binary map:

As you can see, the zero-crossings of the Laplacian detect all edges. No
distinction is made between strong edges and weaker edges. We also
mentioned that the Laplacian is very sensitive to noise. Also, it is
interesting to note that some of the visible edges are due to compression



artifacts. All these factors explain why so many edges are detected by
the operator. In practice, the Laplacian is only used in conjunction with
other operators to detect edges (for example, edges can be declared at
zero-crossing locations of strong gradient magnitude). We will also learn
in Chapter 8 , Detecting Interest Points, that the Laplacian and other
second-order operators are very useful in order to detect interest points
at multiple scales.

There's more...
The Laplacian is a high-pass filter but, interestingly, it is possible to
approximate it by using a combination of low-pass filters. But before
exploring this aspect, let's have a word about image enhancement, which
is a topic we have already discussed, in Chapter 2 , Manipulating
Pixels.

Enhancing the contrast of an image using the Laplacian

The contrast of an image can be enhanced by subtracting its Laplacian
from it. This is what we did in the Scanning an image with neighbor
access recipe of Chapter 2 , Manipulating Pixels, where we introduced
the kernel:



This is equal to 1 minus the Laplacian kernel (that is, the original image
minus its Laplacian).

Difference of Gaussians

The Gaussian filter presented in the first recipe of this chapter extracts
the low frequencies of an image. We learned that the range of
frequencies that are filtered by a Gaussian filter depend on the
parameter σ, which controls the width of the filter. Now, if we subtract
the two images that result from the filtering of an image by two Gaussian
filters of different bandwidths, then the resulting image will be
composed of those higher frequencies that one filter has preserved, and
not the other. This operation is called Difference of Gaussians (DoG)
and is computed as follows:

    cv::GaussianBlur(image,gauss20,cv::Size(),2.0); 
    cv::GaussianBlur(image,gauss22,cv::Size(),2.2); 
 
    // Compute a difference of Gaussians 
    cv::subtract(gauss22, gauss20, dog, cv::Mat(), CV_32F); 
 
    // Compute the zero-crossings of DoG 
    zeros= laplacian.getZeroCrossings(dog); 

The last line of code computes the zero-crossings of the DoG operator. It
results in the following image:



In fact, it can be demonstrated that with the proper choice of σ values,
DoG operators can constitute a good approximation of LoG filters. Also,
if you compute a series of difference of Gaussians from consecutive pair
values in an increasing sequence of σ values, you obtain a scale-space
representation of the image. This multiscale representation is useful, for
example, for scale-invariant image feature detection, as will be
explained in Chapter 8 , Detecting Interest Points.

See also
The Detecting scale-invariant features recipe in Chapter 8 ,
Detecting Interest Points, uses the Laplacian and DoG for the
detection of scale-invariant features



Chapter 7. Extracting Lines,
Contours, and Components
In this chapter, we will cover the following recipes:

Detecting image contours with the Canny operator
Detecting lines in images with the Hough transform
Fitting a line to a set of points
Extracting connected components
Computing components' shape descriptors

Introduction
In order to perform content-based analysis of an image, it is necessary to
extract meaningful features from the collection of pixels that constitute
the image. Contours, lines, blobs, and so on, are fundamental image
primitives that can be used to describe the elements contained in an
image. This chapter will teach you how to extract some of these image
primitives.



Detecting image contours with the
Canny operator
In the previous chapter, we learned how it is possible to detect the edges
of an image. In particular, we showed you that by applying a threshold
to the gradient magnitude, a binary map of the main edges of an image
can be obtained. Edges carry important visual information since they
delineate the image elements. For this reason, they can be used, for
example, in object recognition. However, simple binary edge maps
suffer from two main drawbacks. First, the edges that are detected are
unnecessarily thick; this makes the object's limits more difficult to
identify. Second, and more importantly, it is often impossible to find a
threshold that is sufficiently low in order to detect all important edges of
an image and is, at the same time, sufficiently high in order to not
include too many insignificant edges. This is a trade-off problem that the
Canny algorithm tries to solve.

How to do it...
The Canny algorithm is implemented in OpenCV by the cv::Canny
function. As will be explained, this algorithm requires the specification
of two thresholds. The call to the function is, therefore, as follows:

    //Apply Canny algorithm 
    cv::Mat contours; 
    cv::Canny(image,     // gray-level image 
              contours,  // output contours 
              125,       // low threshold 
              350);      // high threshold 

Let's consider the following image:



When the algorithm is applied on the preceding image, the result is as
follows:



Note that here we have inverted the contour representation since the
normal result represents contours by non-zero pixels. The displayed
image is simply 255-contours.

How it works...
The Canny operator is generally based on the Sobel operator that was
presented in Chapter 6 , Filtering the Images, although other gradient
operators can also be used. The key idea here is to use two different
thresholds in order to determine which point should belong to a contour:
a low and a high threshold.

The low threshold should be chosen in a way that it includes all edge
pixels that are considered to belong to a significant image contour. For
example, using the low-threshold value specified in the example of the
preceding section and applying it on the result of a Sobel operator, the
following edge map is obtained:

As can be seen, the edges that delineate the road are very well defined.
However, because a permissive threshold was used, more edges than



what is ideally needed are also detected. The role of the second
threshold, then, is to define the edges that belong to all important
contours. It should exclude all edges considered as outliers. For
example, the Sobel edge map that corresponds to the high threshold used
in our example is as follows:

We now have an image that contains broken edges, but the ones that are
visible certainly belong to the significant contours of the scene. The
Canny algorithm combines these two edge maps in order to produce an
optimal map of contours. It operates by keeping only the edge points of
the low-threshold edge map for which a continuous path of edges exists,
linking those edge points to an edge that belongs to the high-threshold
edge map. Consequently, all edge points of the high-threshold map are
kept, while all isolated chains of edge points in the low-threshold map
are removed. The solution that is obtained constitutes a good
compromise, allowing good quality contours to be obtained as long as
appropriate threshold values are specified. This strategy, based on the
use of two thresholds to obtain a binary map, is called hysteresis
thresholding, and can be used in any context where a binary map needs
to be obtained from a thresholding operation. However, this is done at



the cost of higher computational complexity.

In addition, the Canny algorithm uses an extra strategy to improve the
quality of the edge map. Prior to the application of the hysteresis
thresholding, all edge points for which the gradient magnitude is not a
maximum in the gradient direction are removed (recall that the gradient
orientation is always perpendicular to the edge). Therefore, the local
maximum of the gradient in this direction corresponds to the point of
maximum strength of the contour. This is a contour thinning operation
that creates edges having a width of 1 pixel. This explains why thin
edges are obtained in the Canny contour maps.

See also
The classic article by J. Canny, A computational approach to edge
detection, IEEE Transactions on Pattern Analysis and Image
Understanding, vol. 18, issue 6, 1986



Detecting lines in images with the
Hough transform
In our human-made world, planar and linear structures abound. As a
result, straight lines are frequently visible in images. These are
meaningful features that play an important role in object recognition and
image understanding. The Hough transform is a classic algorithm that is
often used to detect these particular features in images. It was initially
developed to detect lines in images and, as we will see, it can also be
extended to detect other simple image structures.

Getting ready
With the Hough transform, lines are represented using the following
equation:

The ρ parameter is the distance between the line and the image origin
(the upper-left corner), and θ is the angle of the perpendicular to the
line. In this representation, the lines visible in an image have a θ angle
between 0 and π radians, while the ρ radius can have a maximum value
that equals the length of the image diagonal. Consider, for example, the
following set of lines:



A vertical line such as line 1 has a θ angle value equal to zero, while a
horizontal line (for example, line 5) has its θ value equal to π/2.
Therefore, line 3 has an angle θ equal to π/4, and line 4 is at 0.7π
approximately. In order to be able to represent all possible lines with θ in
the [0, π] interval, the radius value can be made negative. This is the
case with line 2, which has a θ value equal to 0.8π with a negative value
for ρ.

How to do it...
OpenCV offers two implementations of the Hough transform for line
detection. The basic version is cv::HoughLines. Its input is a binary map
that contains a set of points (represented by non-zero pixels), some of
which are aligned to form lines. Usually, this is an edge map obtained,
for example, from the Canny operator. The output of the
cv::HoughLines function is a vector of cv::Vec2f elements, each of
them being a pair of floating point values, representing the parameters of
a detected line, (ρ,θ). The following is an example of using this function
where we first apply the Canny operator to obtain the image contours
and then detect the lines using the Hough transform:

    // Apply Canny algorithm 
    cv::Mat contours; 
    cv::Canny(image,contours,125,350); 
    // Hough transform for line detection 
    std::vector<cv::Vec2f> lines; 
    cv::HoughLines(test, lines, 1,  
                   PI/180,  // step size 



                   60);     // minimum number of votes 

Parameters 3 and 4 correspond to the step size for the line search. In our
example, the function will search for lines of all possible radii by steps
of 1 and all possible angles by steps of π/180. The role of the last
parameter will be explained in the next section. With this particular
choice of parameter values, several lines are detected on the road image
of the preceding recipe. In order to visualize the result of the detection,
it is interesting to draw these lines on the original image. However, it is
important to note that this algorithm detects lines in an image and not
line segments, since the endpoints of each line are not given.
Consequently, we will draw lines that traverse the entire image. To do
this, for a vertically oriented line, we calculate its intersection with the
horizontal limits of the image (that is, the first and last rows) and draw a
line between these two points. We proceed similarly with horizontally-
oriented lines but using the first and last columns. Lines are drawn using
the cv::line function. Note that this function works well even with
point coordinates outside the image limits. Therefore, there is no need to
check whether the computed intersection points fall within the image.
Lines are then drawn by iterating over the line vector as follows:

    std::vector<cv::Vec2f>::const_iterator it= lines.begin(); 
    while (it!=lines.end()) { 
 
      float rho= (*it)[0];   // first element is distance rho 
      float theta= (*it)[1]; // second element is angle theta 
 
      if (theta < PI/4.|| theta > 3.*PI/4.) { //~vertical line 
 
        // point of intersection of the line with first row 
        cv::Point pt1(rho/cos(theta),0); 
        // point of intersection of the line with last row 
        cv::Point pt2((rho-result.rows*sin(theta))/ 
                       cos(theta),result.rows); 
        //draw a white line 
         cv::line( image, pt1, pt2, cv::Scalar(255), 1); 
    
      } else { // ~horizontal line 
 
        // point of intersection of the 
        // line with first column 



        cv::Point pt1(0,rho/sin(theta)); 
        //point of intersection of the line with last column 
        cv::Point pt2(result.cols,
                      (rho-result.cols*cos(theta))/sin(theta));  
        // draw a white line 
        cv::line(image, pt1, pt2, cv::Scalar(255), 1); 
      } 
      ++it; 
    } 

The following result is obtained:

As can be seen, the Hough transform simply looks for an alignment of
edge pixels across the image. This can potentially create some false
detections due to incidental pixel alignments or multiple detections when
several lines with slightly different parameter values pass through the
same alignment of pixels.

To overcome some of these problems, and to allow line segments to be
detected (that is, with endpoints), a variant of the transform has been
proposed. This is the Probabilistic Hough transform, and it is
implemented in OpenCV as the cv::HoughLinesP function. We use it



here to create our LineFinder class, which encapsulates the function
parameters:

    class LineFinder { 
 
      private: 
 
      // original image 
      cv::Mat img; 
 
      // vector containing the endpoints of the detected lines 
      std::vector<cv::Vec4i> lines; 
 
      // accumulator resolution parameters 
      double deltaRho; 
      double deltaTheta; 
 
      // minimum number of votes that a line   
      // must receive before being considered 
      int minVote; 
 
     //min length for a line 
     double minLength; 
 
     //max allowed gap along the line 
     double maxGap; 
 
     public: 
   
      // Default accumulator resolution is 1 pixel by 1 degree 
      // no gap, no minimum length 
      LineFinder() : deltaRho(1), deltaTheta(PI/180),               
                     minVote(10), minLength(0.), maxGap(0.) {} 

Take a look at the corresponding setter methods:

    // Set the resolution of the accumulator 
    void setAccResolution(double dRho, double dTheta) { 
 
      deltaRho= dRho; 
      deltaTheta= dTheta; 
    } 
 
    // Set the minimum number of votes 
    void setMinVote(int minv) { 
 



      minVote= minv; 
    } 
 
    // Set line length and gap 
    void setLineLengthAndGap(double length, double gap) { 
 
      minLength= length; 
      maxGap= gap; 
    } 

With the preceding method, the method that performs Hough line
segment detection is as follows:

    // Apply probabilistic Hough Transform 
    std::vector<cv::Vec4i> findLines(cv::Mat& binary) { 
 
      lines.clear(); 
      cv::HoughLinesP(binary,lines,
                      deltaRho, deltaTheta, minVote,
                      minLength, maxGap); 
 
      return lines; 
    } 

This method returns a vector of cv::Vec4i, which contains the start and
endpoint coordinates of each detected segment. The detected lines can
then be drawn on an image with the following method:

    // Draw the detected lines on an image 
    void drawDetectedLines(cv::Mat &image,               
                           cv::Scalar 
color=cv::Scalar(255,255,255)) { 
 
      // Draw the lines 
      std::vector<cv::Vec4i>::const_iterator it2= 
lines.begin(); 
 
      while (it2!=lines.end()) { 
 
        cv::Point pt1((*it2)[0],(*it2)[1]); 
        cv::Point pt2((*it2)[2],(*it2)[3]); 
 
        cv::line( image, pt1, pt2, color); 
 
        ++it2; 



      } 
    } 

Now, using the same input image, lines can be detected with the
following sequence:

    // Create LineFinder instance 
    LineFinder finder; 
 
    // Set probabilistic Hough parameters 
    finder.setLineLengthAndGap(100,20); 
    finder.setMinVote(60); 
 
    // Detect lines and draw them on the image 
    std::vector<cv::Vec4i> lines= finder.findLines(contours); 
    finder.drawDetectedLines(image); 

The preceding code gives the following result:

How it works...
The objective of the Hough transform is to find all lines in a binary
image that pass through a sufficient number of points. It proceeds by



considering each individual pixel point in the input binary map and
identifying all possible lines that pass through it. When the same line
passes through many points, it means that this line is significant enough
to be considered.

The Hough transform uses a two-dimensional accumulator in order to
count how many times a given line is identified. The size of this
accumulator is defined by the specified step sizes (as mentioned in the
preceding section) of the (ρ,θ) parameters of the adopted line
representation. To illustrate the functioning of the transform, let's create
a 180 by 200 matrix (corresponding to a step size of π/180 for θ and 1 for
ρ):

    // Create a Hough accumulator 
    // here a uchar image; in practice should be ints 
    cv::Mat acc(200,180,CV_8U,cv::Scalar(0)); 

This accumulator is a mapping of different (ρ,θ) values. Therefore,
each entry of this matrix corresponds to one particular line. Now, if we
consider one point, let's say one at (50,30), then it is possible to identify
all lines that pass through this point by looping over all possible θ angles
(with a step size of π/180) and computing the corresponding (rounded) ρ
value:

    // Choose a point 
    int x=50, y=30; 
    // loop over all angles 
    for (int i=0; i<180; i++) { 
 
      double theta= i*PI/180.; 
 
      // find corresponding rho value  
      double rho= x*std::cos(theta)+y*std::sin(theta); 
      // j corresponds to rho from -100 to 100 
      int j= static_cast<int>(rho+100.5); 
 
      std::cout << i << "," << j << std::endl; 
 
      // increment accumulator 
      acc.at<uchar>(j,i)++; 
    } 



The entries of the accumulator corresponding to the computed (ρ,θ)
pairs are then incremented, signifying that all of these lines pass through
one point of the image (or, to say it another way, each point votes for a
set of possible candidate lines). If we display the accumulator as an
image (inverted and multiplied by 100 to make the count of 1 visible),
we obtain the following:

The preceding curve represents the set of all lines that pass through the
specified point. Now, if we repeat the same exercise with, let's say, point
(30,10), we now have the following accumulator:

  As can be seen, the two resulting curves intersect at one point: the
point that corresponds to the line that passes through these two points.
The corresponding entry of the accumulator receives two votes,
indicating that two points pass through this line.



If the same process is repeated for all points of a binary map, then points
aligned along a given line will increase a common entry of the
accumulator many times. At the end, you just need to identify the local
maxima in this accumulator that receives a significant number of votes
in order to detect the lines (that is, point alignments) in the image. The
last parameter specified in the cv::HoughLines function corresponds to
the minimum number of votes that a line must receive to be considered
as detected. This means that the lower this minimum number of votes is,
then the higher the number of detected lines will be.

For example, if we lower this value to 50 in the case of our road
example, then the following lines are now detected:

The Probabilistic Hough transform adds a few modifications to the basic
algorithm. First, instead of systematically scanning the image row-by-
row, points are chosen in random order in the binary map. Whenever an
entry of the accumulator reaches the specified minimum value, the
image is scanned along the corresponding line and all points that pass
through it are removed (even if they have not voted yet). This scanning
also determines the length of the segments that will be accepted. For



this, the algorithm defines two additional parameters. One is the
minimum length for a segment to be accepted, and the other is the
maximum pixel gap that is permitted to form a continuous segment. This
additional step increases the complexity of the algorithm, but this is
partly compensated by the fact that fewer points will be involved in the
voting process, as some of them are eliminated by the line-scanning
process.

There's more...
The Hough transform can also be used to detect other geometrical
entities. In fact, any entity that can be represented by a parametric
equation is a good candidate for the Hough transform. There is also a
Generalized Hough transform that can detect objects of any shape.

Detecting circles

In the case of circles, the corresponding parametric equation is as
follows:

This equation includes three parameters (the circle radius and center
coordinates), which means that a three-dimensional accumulator would
be required. However, it is generally found that the Hough transform
becomes more complex and less reliable as the dimensionality of its
accumulator increases. Indeed, in this case, a large number of entries of
the accumulator will be incremented for each point and, as a
consequence, the accurate localization of local peaks becomes more
difficult. Different strategies have been proposed in order to overcome
this problem. The strategy used in the OpenCV implementation of the
Hough circle detection uses two passes. During the first pass, a two-
dimensional accumulator is used to find candidate circle locations. Since



the gradient of points on the circumference of a circle should point in
the direction of the radius, for each point, only the entries in the
accumulator along the gradient direction are incremented (based on
predefined minimum and maximum radius values). Once a possible
circle center is detected (that is, has received a predefined number of
votes), a 1D histogram of a possible radius is built during the second
pass. The peak value in this histogram corresponds to the radius of the
detected circles.

The cv::HoughCircles function that implements the preceding strategy
integrates both the Canny detection and the Hough transform. It is
called as follows:

    cv::GaussianBlur(image,image,cv::Size(5,5),1.5); 
    std::vector<cv::Vec3f> circles; 
       cv::HoughCircles(image, circles, cv::HOUGH_GRADIENT,  
                   2,    //accumulator resolution (size of the 
image/2)  
                   50,   // minimum distance between two 
circles 
                   200,  // Canny high threshold  
                   100,  // minimum number of votes  
                   25,
                   100); // min and max radius 

Note that it is always recommended that you smooth the image before
calling the cv::HoughCircles function in order to reduce the image
noise that could cause several false circle detections. The result of the
detection is given in a vector of cv::Vec3f instances. The first two
values are the circle center coordinates and the third is the radius.

The cv::HOUGH_GRADIENT argument was the only option available at the
time of writing. It corresponds to the two-pass circle detection method.
The fourth parameter defines the accumulator resolution. It is a divider
factor; specifying a value of 2, for example, makes the accumulator half
the size of the image. The next parameter is the minimum distance in
pixels between two detected circles. The other parameter corresponds to
the high threshold of the Canny edge detector. The low-threshold value
is always set at half this value. The seventh parameter is the minimum



number of votes that a center location must receive during the first pass
to be considered as a candidate circle for the second pass. Finally, the
last two parameters are the minimum and maximum radius values for the
circles to be detected. As can be seen, the function includes many
parameters that make it difficult to tune.

Once the vector of detected circles is obtained, these circles can be
drawn on the image by iterating over the vector and calling the
cv::circle drawing function with the obtained parameters:

    std::vector<cv::Vec3f>::const_iterator itc= 
circles.begin(); 
 
    while (itc!=circles.end()) { 
 
      cv::circle(image,   
                 cv::Point((*itc)[0], (*itc)[1]), // circle 
centre 
                 (*itc)[2],       // circle radius 
                 cv::Scalar(255), // color 
                 2);              // thickness 
   
      ++itc;    
    } 

The following is the result obtained on a test image with the chosen
arguments:



See also
The following article, Gradient-based Progressive Probabilistic
Hough Transform by C. Galambos, J. Kittler, and J. Matas, IEE
Vision Image and Signal Processing, vol. 148 no 3, pp. 158-165,
2002, is one of the numerous references on the Hough transform
and describes the probabilistic algorithm implemented in OpenCV.
The following article, Comparative Study of Hough Transform
Methods for Circle Finding, Image and Vision Computing, vol. 8 no
1, pp. 71-77, 1990, by H.K. Yuen, J. Princen, J. Illingworth, and J
Kittler, describes different strategies for circle detection using the
Hough transform.



Fitting a line to a set of points
In some applications, it could be important to not only detect lines in an
image, but also to obtain an accurate estimate of the line's position and
orientation. This recipe will show you how to estimate the exact line that
best fits a given set of points.

How to do it...
The first thing to do is to identify points in an image that seem to be
aligned along a straight line. Let's use one of the lines we detected in the
preceding recipe. The lines detected using cv::HoughLinesP are
contained in std::vector<cv::Vec4i> called lines. To extract the set of
points that seem to belong to, let's say, the first of these lines, we can
proceed as follows. We draw a white line on a black image and intersect
it with the Canny image of contours used to detect our lines. This is
simply achieved by the following statements:

    int n=0;         // we select line 0 
    // black image 
    cv::Mat oneline(contours.size(),CV_8U,cv::Scalar(0)); 
    // white line 
    cv::line(oneline, cv::Point(lines[n][0],lines[n][1]),
             cv::Point(lines[n] [2],
             lines[n][3]), cv::Scalar(255),  
             3);      // line width 
    // contours AND white line 
    cv::bitwise_and(contours,oneline,oneline); 

The result is an image that contains points that could be associated with
the specified line. In order to introduce some tolerance, we draw a line
of a certain thickness (here, 3). All points inside the defined
neighborhood are, therefore, accepted.

The following is the image that is obtained (inverted for better viewing):



The coordinates of the points in this set can then be inserted in a
std::vector of cv::Point objects (floating point coordinates, that is,
cv::Point2f, can also be used) with the following double loop:

    std::vector<cv::Point> points; 
 
    // Iterate over the pixels to obtain all point positions 
    for( int y = 0; y < oneline.rows; y++ ) { 
      // row y 
 
      uchar* rowPtr = oneline.ptr<uchar>(y); 
 
      for( int x = 0; x < oneline.cols; x++ ) { 
        // column x  
 
        // if on a contour 
        if (rowPtr[x]) { 
 
          points.push_back(cv::Point(x,y)); 
        } 
      } 
    } 

We now have a list of points and we want to fit a line passing through



these points. This best fitting line is easily found by calling the
cv::fitLine OpenCV function:

    cv::Vec4f line; 
    cv::fitLine(points,line, 
                cv::DIST_L2, //distance type 
                0,           //not used with L2 distance 
                0.01,0.01);  //accuracy 

The preceding code gives us the parameters of the line equation in the
form of a unit-directional vector (the first two values of cv::Vec4f) and
the coordinates of one point on the line (the last two values of
cv::Vec4f). The last two parameters specify the requested accuracy for
the line parameters.

In general, the line equation will be used in the calculation of some
properties (calibration is a good example where precise parametric
representation is required). As an illustration, and to make sure we
calculated the right line, let's draw the estimated line on the image. Here,
we simply draw an arbitrary black segment that has a length of 100
pixels and a thickness of 2 pixels (to make it visible):

    int x0= line[2];        // a point on the line 
    int y0= line[3]; 
    int x1= x0+100*line[0]; // add a vector of length 100 
    int y1= y0+100*line[1]; // using the unit vector 
    // draw the line 
    cv::line(image,cv::Point(x0,y0),cv::Point(x1,y1),  
             0,2);          // color and thickness 

The following image shows this line well aligned with one of the road's
sides:



How it works...
Fitting lines to a set of points is a classic problem in mathematics. The
OpenCV implementation proceeds by minimizing the sum of the
distances from each point to the line. Several distance functions are
proposed, and the fastest option is to use the Euclidean distance, which
is specified by cv::DIST_L2. This choice corresponds to the standard
least-squares line fitting. When outliers (that is, points that don't belong
on the line) are included in the point set, other distance functions that
give less influence to far points can be selected. The minimization is
based on the M-estimator technique, which iteratively solves a weighted
least-squares problem with weights that are inversely proportional to the
distance from the line.

Using this function, it is also possible to fit a line to a 3D point set. The
input is, in this case, a set of cv::Point3i or cv::Point3f objects, and
the output is a std::Vec6f instance.

There's more...



The cv::fitEllipse function fits an ellipse to a set of 2D points. This
returns a rotated rectangle (a cv::RotatedRect instance), inside which
the ellipse is inscribed. In this case, you would write the following:

    cv::RotatedRect rrect= cv::fitEllipse(cv::Mat(points)); 
    cv::ellipse(image,rrect,cv::Scalar(0)); 

The cv::ellipse function is the one you would use to draw the
computed ellipse.



Extracting connected components
Images generally contain representations of objects. One of the goals of
image analysis is to identify and extract these objects. In object
detection/recognition applications, the first step is often to produce a
binary image that shows you where certain objects of interest could be
located. No matter how this binary map is obtained (for example, from
the histogram back projection we performed in Chapter 4 , Counting the
Pixels with Histograms, or from motion analysis as we will learn in
Chapter 12 , Processing Video Sequences), the next step is to extract the
objects that are contained in this collection of 1s and 0s.

Consider, for example, the image of buffaloes in a binary form that we
manipulated in Chapter 5 , Transforming Images with Morphological
Operations, as shown in the following figure:

We obtained this image from a simple thresholding operation followed
by the application of morphological filters. This recipe will show you
how to extract the objects of such images. More specifically, we will
extract the connected components, that is, shapes made of a set of
connected pixels in a binary image.

How to do it...
OpenCV offers a simple function that extracts the contours of the



connected components of an image. This is the cv::findContours
function:

    // the vector that will contain the contours 
    std::vector<std::vector<cv::Point>> contours; 
    cv::findContours(image,     
                 contours,              // a vector of contours  
                 cv::RETR_EXTERNAL,     // retrieve the 
external contours 
                 cv::CHAIN_APPROX_NONE);// all pixels of each 
contours 

The input is obviously the binary image. The output is a vector of
contours, each contour being represented by a vector of cv::Point
objects. This explains why the output parameter is defined as a
std::vector instance of the std::vector instances. In addition, two
flags are specified. The first one indicates that only the external contours
are required, that is, holes in an object will be ignored (the There's
more... section will discuss the other options).

The second flag is there to specify the format of the contour. With the
current option, the vector will list all of the points in the contour. With
the cv::CHAIN_APPROX_SIMPLE flag, only the endpoints for horizontal,
vertical, or diagonal contours will be included. Other flags would give a
more sophisticated chain approximation of the contours in order to
obtain a more compact representation. With the preceding image, nine
connected components are obtained as given by contours.size().

Fortunately, there is a very convenient function that can draw the
contours of those components on an image (here, a white image):

    //draw black contours on a white image 
    cv::Mat result(image.size(),CV_8U,cv::Scalar(255)); 
    cv::drawContours(result,contours,
                     -1, // draw all contours 
                     0,  // in black 
                     2); // with a thickness of 2 

If the third parameter of this function is a negative value, then all
contours are drawn. Otherwise, it is possible to specify the index of the



contour to be drawn. The result is as follows:

How it works...
The contours are extracted by a simple algorithm that consists of
systematically scanning the image until a component is hit. From this
starting point on the component, its contour is followed, marking the
pixels on its border. When the contour is completed, the scanning
resumes at the last position until a new component is found.

The identified connected components can then be individually analyzed.
For example, if some prior knowledge is available about the expected
size of the objects of interest, it becomes possible to eliminate some of
the components. Let's then use a minimum and a maximum value for the
perimeter of the components. This is done by iterating over the vector of
contours and eliminating the invalid components:

    // Eliminate too short or too long contours 
    int cmin= 50;   // minimum contour length 
    int cmax= 1000; // maximum contour length 
    std::vector<std::vector<cv::Point>>::



               iterator itc= contours.begin(); 
    // for all contours 
    while (itc!=contours.end()) { 
    
      // verify contour size 
      if (itc->size() < cmin || itc->size() > cmax) 
        itc= contours.erase(itc); 
      else 
        ++itc; 
    } 

Note that this loop could have been made more efficient since each
erasing operation in a std::vector instance is O(N). However,
considering the small size of this vector, the overall cost is not too high.

This time, we draw the remaining contours on the original image and
obtain the following result:

We were lucky enough to find a simple criterion that allowed us to
identify all objects of interest in this image. In more complex situations,
a more refined analysis of the components' properties is required. This is
the object of the next recipe, Computing components' shape



descriptors.

There's more...
With the cv::findContours function, it is also possible to include all
closed contours in the binary map, including the ones formed by holes in
the components. This is done by specifying another flag in the function
call:

       cv::findContours(image,  
                        contours,               // a vector of 
contours  
                        cv::RETR_LIST,          // retrieve all 
contours 
                        cv::CHAIN_APPROX_NONE); // all pixels 

With this call, the following contours are obtained:

Notice the extra contours that were added in the background forest. It is
also possible to have these contours organized into a hierarchy. The
main component is the parent, holes in it are its children, and if there are
components inside these holes, they become the children of the previous



children, and so on. This hierarchy is obtained by using the
cv::RETR_TREE flag, as follows:

    std::vector<cv::Vec4i> hierarchy; 
    cv::findContours(image, contours, // a vector of contours 
            hierarchy,                // hierarchical 
representation  
            cv::RETR_TREE,            // contours in tree 
format 
            cv::CHAIN_APPROX_NONE);   //all pixels of each 
contours 

In this case, each contour has a corresponding hierarchy element at the
same index, made of four integers. The first two integers give you the
index of the next and the previous contours of the same level, and the
next two integers give you the index of the first child and the parent of
this contour. A negative index indicates the end of a contour list. The
cv::RETR_CCOMP flag is similar but limits the hierarchy at two levels.



Computing components' shape
descriptors
A connected component often corresponds to the image of an object in a
pictured scene. To identify this object, or to compare it with other image
elements, it can be useful to perform some measurements on the
component in order to extract some of its characteristics. In this recipe,
we will look at some of the shape descriptors available in OpenCV that
can be used to describe the shape of a connected component.

How to do it...
Many OpenCV functions are available when it comes to shape
description. We will apply some of them on the components that we
have extracted in the preceding recipe. In particular, we will use our
vector of four contours corresponding to the four buffaloes we
previously identified. In the following code snippets, we compute a
shape descriptor on the contours (contours[0] to contours[3]) and
draw the result (with a thickness of 2) over the image of the contours
(with a thickness of 1). This image is shown at the end of this section.

The first one is the bounding box, which is applied to the bottom-right
component:

    // testing the bounding box  
    cv::Rect r0= cv::boundingRect(contours[0]); 
    // draw the rectangle 
    cv::rectangle(result,r0, 0, 2); 

The minimum enclosing circle is similar. It is applied to the upper-right
component:

    // testing the enclosing circle  
    float radius; 
    cv::Point2f center; 
    cv::minEnclosingCircle(contours[1],center,radius); 
    // draw the circle 
    cv::circle(result,center,static_cast<int>(radius), 



               cv::Scalar(0),2); 

The polygonal approximation of a component's contour is computed as
follows (on the left-hand component):

    // testing the approximate polygon 
    std::vector<cv::Point> poly; 
    cv::approxPolyDP(contours[2],poly,5,true); 
    // draw the polygon 
    cv::polylines(result, poly, true, 0, 2); 

Notice the polygon drawing function, cv::polylines. This operates
similarly to the other drawing functions. The third Boolean parameter is
used to indicate whether the contour is closed or not (if yes, the last
point is linked to the first one).

The convex hull is another form of polygonal approximation (on the
second component from the left):

    // testing the convex hull 
    std::vector<cv::Point> hull; 
    cv::convexHull(contours[3],hull); 
    // draw the polygon 
    cv::polylines(result, hull, true, 0, 2); 

Finally, the computation of the moments is another powerful descriptor
(the center of mass is drawn inside all components):

    // testing the moments 
    // iterate over all contours 
    itc= contours.begin(); 
    while (itc!=contours.end()) { 
 
      // compute all moments 
      cv::Moments mom= cv::moments(cv::Mat(*itc++)); 
   
      // draw mass center 
      cv::circle(result, 
                 // position of mass center converted to 
integer 
                 cv::Point(mom.m10/mom.m00,mom.m01/mom.m00), 
                 2, cv::Scalar(0),2); // draw black dot 
    } 



The resulting image is as follows:

How it works...
The bounding box of a component is probably the most compact way to
represent and localize a component in an image. It is defined as the
upright rectangle of minimum size that completely contains the shape.
Comparing the height and width of the box gives you an indication
about the vertical or horizontal dimensions of the object (for example,
one could use a height-to-width ratio in order to distinguish an image of
a car from one of a pedestrian). The minimum enclosing circle is
generally used when only the approximate component size and location
is required.

The polygonal approximation of a component is useful when one wants
to manipulate a more compact representation that resembles the
component's shape. It is created by specifying an accuracy parameter,
giving you the maximal acceptable distance between a shape and its
simplified polygon. It is the fourth parameter in the cv::approxPolyDP
function. The result is a vector of cv::Point, which corresponds to the



vertices of the polygon. To draw this polygon, we need to iterate over
the vector and link each point with the next one by drawing a line
between them.

The convex hull, or convex envelope, of a shape is the minimal convex
polygon that encompasses a shape. It can be visualized as the shape that
an elastic band would take if placed around the component. As can be
seen, the convex hull contour will deviate from the original one at the
concave locations of the shape contour.

These locations are often designated as convexity defects, and a special
OpenCV function is available to identify them: the
cv::convexityDefects function. It is called as follows:

    std::vector<cv::Vec4i> defects; 
    cv::convexityDefects(contour, hull, defects); 

The contour and hull arguments are, respectively, the original and the
convex hull contours (both represented with std::vector<cv::Point>
instances). The output is a vector of four integer elements. The first two
integers are the indices of the points on the contour, delimiting the
defect; the third integer corresponds to the farthest point inside the
concavity, and finally, the last integer corresponds to the distance
between this farthest point and the convex hull.

Moments are commonly used mathematical entities in the structural
analysis of shapes. OpenCV has defined a data structure that
encapsulates all computed moments of a shape. It is the object returned
by the cv::moments function. Together, the moments represent a
compact description of the shape of an object. They are commonly used,
for example, in character recognition. We simply use this structure to
obtain the mass center of each component that is computed from the
first three spatial moments here.

There's more...
Other structural properties can be computed using the available OpenCV
functions. The cv::minAreaRect function computes the minimum



enclosed rotated rectangle (this was used in Chapter 5 , Transforming
Images with Morphological Operations, in the Extracting distinctive
regions using MSER recipe). The cv::contourArea function estimates
the area of (the number of pixels inside) a contour. The
cv::pointPolygonTest function determines whether a point is inside or
outside a contour, and cv::matchShapes measures the resemblance
between two contours. All these property measures can be
advantageously combined in order to perform more advanced structural
analysis.

Quadrilateral detection

The MSER features presented in Chapter 5 , Transforming Images with
Morphological Operations, constitutes an efficient tool to extract
shapes in an image. Considering the MSER result obtained in the
preceding chapter, we will now build an algorithm to detect quadrilateral
components in an image. In the case of the current image, this detection
will allow us to identify the building's windows. A binary version of the
MSER image is easily obtained, as follows:

    // create a binary version 
    components= components==255; 
    // open the image (white background) 
    cv::morphologyEx(components,components,  
                     cv::MORPH_OPEN,cv::Mat(),
                     cv::Point(-1,-1),3); 

In addition, we cleaned the image with a morphological filter. The image
is then as follows:



The next step is to obtain the contours:

    //invert image (background must be black) 
    cv::Mat componentsInv= 255-components; 
    //Get the contours of the connected components 
    cv::findContours(componentsInv, 
                     contours,          // a vector of contours  
                     cv::RETR_EXTERNAL, // retrieve the 
external contours 
                     cv::CHAIN_APPROX_NONE); 

Finally, we go over all the contours and roughly approximate them with
a polygon:

    // white image 
    cv::Mat quadri(components.size(),CV_8U,255); 
 
    // for all contours 
    std::vector<std::vector<cv::Point>>::iterator it= 



contours.begin(); 
    while (it!= contours.end()) { 
      poly.clear(); 
      // approximate contour by polygon 
      cv::approxPolyDP(*it,poly,10,true); 
   
       // do we have a quadrilateral? 
      if (poly.size()==4) { 
        //draw it 
        cv::polylines(quadri, poly, true, 0, 2); 
      } 
      ++it; 
    } 

The quadrilaterals are those polygons that have four edges. The detected
ones are the following:

To detect rectangles, you can simply measure the angles between
adjacent edges and reject the quadrilaterals that have angles that deviate



too much from 90 degrees.



Chapter 8. Detecting Interest
Points
In this chapter, we will cover the following recipes:

Detecting corners in an image
Detecting features quickly
Detecting scale-invariant features
Detecting FAST features at multiple scales

Introduction
In computer vision, the concept of interest points also called keypoints
or feature points has been largely used to solve many problems in
object recognition, image registration, visual tracking, 3D
reconstruction, and more. This concept relies on the idea that instead of
looking at the image as a whole (that is, extracting global features), it
could be advantageous to select some special points in the image and
perform a local analysis on them (that is, extracting local features). This
approach works well as long as a sufficient number of such points are
detected in the images of interest, and these points are distinguishing and
stable features, that can be accurately localized.

Because they are used for analyzing image content, feature points
should ideally be detected at the same scene or object location, no
matter from which viewpoint, scale, or orientation the image was taken.
View invariance is a very desirable property in image analysis and has
been the object of numerous studies. As we will see, different detectors
have different invariance properties. This chapter focuses on the
keypoint extraction process itself. The following chapters will then show
you how interest points can be put to work in different contexts, such as
image matching or image geometry estimation.



Detecting corners in an image
When searching for interesting feature points in images, corners come
out as an interesting solution. They are indeed local features that can be
easily localized in an image, and in addition, they should abound in
scenes of man-made objects (where they are produced by walls, doors,
windows, tables, and so on). Corners are also interesting because they
are two-dimensional features that can be accurately detected (even at
sub-pixel accuracy), as they are at the junction of two edges. This is in
contrast to points located on a uniform area or on the contour of an
object; these ones would be difficult to repeatedly localize precisely on
other images of the same object. The Harris feature detector is a
classical approach to detecting corners in an image. We will explore this
operator in this recipe.

How to do it...
The basic OpenCV function that is used to detect Harris corners is called
cv::cornerHarris and is straightforward to use. You call it on an input
image, and the result is an image of floats that gives you the corner
strength at each pixel location. A threshold is then applied on this output
image in order to obtain a set of detected corners. This is accomplished
with the following code:

    // Detect Harris Corners 
    cv::Mat cornerStrength; 
    cv::cornerHarris(image,          // input image 
                     cornerStrength, // image of cornerness 
                     3,              // neighborhood size 
                     3,              // aperture size 
                     0.01);          // Harris parameter 
 
    // threshold the corner strengths 
    cv::Mat harrisCorners; 
    double threshold= 0.0001; 
    cv::threshold(cornerStrength,harrisCorners, 
                  threshold,255,cv::THRESH_BINARY); 

Here is the original image:



The result is a binary map image, shown in the following screenshot,
which is inverted for better viewing (that is, we used
cv::THRESH_BINARY_INV instead of cv::THRESH_BINARY to get the
detected corners in black):



From the preceding function call, we observe that this interest point
detector requires several parameters (these will be explained in the next
section) that might make it difficult to tune. In addition, the corner map
that is obtained contains many clusters of corner pixels that contradict
the fact that we would like to detect well-localized points. Therefore, we
will try to improve the corner detection method by defining our own
class to detect Harris corners.

The class encapsulates the Harris parameters with their default values
and corresponding getter and setter methods (which are not shown
here):

    class HarrisDetector { 
 
      private: 
 
      // 32-bit float image of corner strength 
      cv::Mat cornerStrength; 
      // 32-bit float image of thresholded corners 
      cv::Mat cornerTh; 
      // image of local maxima (internal) 
      cv::Mat localMax; 
      // size of neighborhood for derivatives smoothing 
      int neighborhood; 
      // aperture for gradient computation 
      int aperture; 
      // Harris parameter 
      double k; 
      // maximum strength for threshold computation 
      double maxStrength; 
      // calculated threshold (internal) 
      double threshold; 
      // size of neighborhood for non-max suppression 
      int nonMaxSize; 
      // kernel for non-max suppression 
      cv::Mat kernel; 
 
      public: 
 
      HarrisDetector(): neighborhood(3), aperture(3),  
                        k(0.01), maxStrength(0.0),  
                        threshold(0.01), nonMaxSize(3) { 
 



         // create kernel used in non-maxima suppression 
         setLocalMaxWindowSize(nonMaxSize); 
      } 

To detect the Harris corners on an image, we proceed in two steps. First,
the Harris values at each pixel are computed:

    // Compute Harris corners 
    void detect(const cv::Mat& image) { 
 
      // Harris computation 
      cv::cornerHarris(image,cornerStrength,                   
                       neighbourhood,// neighborhood size 
                       aperture,     // aperture size 
                       k);           // Harris parameter 
  
      // internal threshold computation 
      cv::minMaxLoc(cornerStrength,0,&maxStrength); 
 
      // local maxima detection 
      cv::Mat dilated;  //temporary image 
      cv::dilate(cornerStrength,dilated,cv::Mat()); 
      cv::compare(cornerStrength,dilated, localMax, 
cv::CMP_EQ); 
    } 

Next, the feature points are obtained, based on a specified threshold
value. Since the range of possible values for Harris depends on the
particular choices of its parameters, the threshold is specified as a
quality level that is defined as a fraction of the maximal Harris value
computed in the image:

    // Get the corner map from the computed Harris values 
    cv::Mat getCornerMap(double qualityLevel) { 
 
      cv::Mat cornerMap; 
 
      // thresholding the corner strength 
      threshold= qualityLevel*maxStrength; 
      cv::threshold(cornerStrength,cornerTh, threshold, 255,
                    cv::THRESH_BINARY); 
 
      // convert to 8-bit image 
      cornerTh.convertTo(cornerMap,CV_8U); 



 
      // non-maxima suppression 
      cv::bitwise_and(cornerMap,localMax,cornerMap); 
 
      return cornerMap; 
    } 

This method returns a binary corner map of the detected features. The
fact that the detection of the Harris features has been split into two
methods, allows us to test the detection with a different threshold (until
an appropriate number of feature points are obtained) without the need
to repeat costly computations. It is also possible to obtain the Harris
features in the form of a std::vector of cv::Point instances:

    // Get the feature points from the computed Harris values 
    void getCorners(std::vector<cv::Point> &points, double 
qualityLevel) { 
 
      // Get the corner map 
      cv::Mat cornerMap= getCornerMap(qualityLevel); 
      // Get the corners 
      getCorners(points, cornerMap); 
    } 
 
    // Get the feature points from the computed corner map 
    void getCorners(std::vector<cv::Point> &points,
                    const cv::Mat& cornerMap) { 
 
      // Iterate over the pixels to obtain all features 
      for( int y = 0; y < cornerMap.rows; y++ ) { 
 
        const uchar* rowPtr = cornerMap.ptr<uchar>(y); 
 
        for( int x = 0; x < cornerMap.cols; x++ ) { 
 
          // if it is a feature point 
          if (rowPtr[x]) { 
 
            points.push_back(cv::Point(x,y)); 
          } 
        } 
      } 
    } 



This class also improves the detection of the Harris corners by adding a
non-maxima suppression step, which will be explained in the next
section. The detected points can now be drawn on an image using the
cv::circle function, as demonstrated by the following method:

    // Draw circles at feature point locations on an image 
    void drawOnImage(cv::Mat &image,  
                     const std::vector<cv::Point> &points,  
                     cv::Scalar color= cv::Scalar(255,255,255),   
                     int radius=3, int thickness=1) { 
      std::vector<cv::Point>::const_iterator it= 
points.begin(); 
  
      // for all corners 
      while (it!=points.end()) { 
 
        // draw a circle at each corner location 
        cv::circle(image,*it,radius,color,thickness); 
        ++it; 
      } 
    } 

Using this class, the detection of the Harris points is accomplished as
follows:

    // Create Harris detector instance 
    HarrisDetector harris; 
    // Compute Harris values 
    harris.detect(image); 
    // Detect Harris corners 
    std::vector<cv::Point> pts; 
    harris.getCorners(pts,0.02); 
    // Draw Harris corners 
    harris.drawOnImage(image,pts); 

This results in the following image:



How it works...
To define the notion of corners in images, the Harris feature detector
looks at the average directional change in intensity in a small window
around a putative interest point. If we consider a displacement vector,
(u,v), the intensity change can be measured by a sum of squared
difference:

The summation is over a defined neighborhood around the considered
pixel (the size of this neighborhood corresponds to the third parameter in
the cv::cornerHarris function). This average intensity change can then
be computed in all possible directions, which leads to the definition of a
corner as a point for which the average change is high in more than one
direction. From this definition, the Harris test is performed as follows:



We first obtain the direction of the maximal average intensity change.
Next, we check whether the average intensity change in the orthogonal
direction is high as well. If this is the case, then we have a corner.

Mathematically, this condition can be tested by using an approximation
of the preceding formula using the Taylor expansion:

This is then rewritten in matrix form:

This matrix is a covariance matrix that characterizes the rate of intensity
change in all directions. This definition involves the image's first
derivatives that are often computed using the Sobel operator. This is the
case with the OpenCV implementation, in which the fourth parameter of
the function corresponds to the aperture used for the computation of the
Sobel filters. It can be shown that the two eigenvalues of the covariance
matrix give you the maximal average intensity change and the average
intensity change for the orthogonal direction. Then, if these two



eigenvalues are low, we are in a relatively homogenous region. If one
eigenvalue is high and the other is low, we must be on an edge. Finally, if
both eigenvalues are high, then we are at a corner location. Therefore,
the condition for a point to be accepted as a corner is to have the
smallest eigenvalue of its covariance matrix higher than a given
threshold.

The original definition of the Harris corner algorithm uses some
properties of the eigen decomposition theory in order to avoid the cost
of explicitly computing the eigenvalues. These properties are as follows:

The product of the eigenvalues of a matrix is equal to its
determinant
The sum of the eigenvalues of a matrix is equal to the sum of the
diagonal of the matrix (also known as the trace of the matrix)

It then follows that we can verify whether the eigenvalues of a matrix
are high by computing the following score:

One can easily verify that this score will indeed be high only if both
eigenvalues are high too. This is the score that is computed by the
cv::cornerHarris function at each pixel location. The value of k is
specified as the fifth parameter of the function. It could be difficult to
determine what value is best for this parameter. However, in practice, a
value in the range of 0.05 and 0.5 generally gives good results.

To improve the result of the detection, the class described in the
previous section adds an additional non-maxima suppression step. The
goal here is to exclude Harris corners that are adjacent to others.
Therefore, to be accepted, the Harris corner must not only have a score
higher than the specified threshold, but it must also be a local maximum.



This condition is tested by using a simple trick that consists of dilating
the image of the Harris score in our detect method:

    cv::dilate(cornerStrength, dilated,cv::Mat()); 

Since the dilation replaces each pixel value with the maximum in the
defined neighborhood, the only points that will not be modified are the
local maxima. This is what is verified by the following equality test:

    cv::compare(cornerStrength, dilated, localMax,cv::CMP_EQ); 

The localMax matrix will therefore be true (that is, non-zero) only at
local maxima locations. We then use it in our getCornerMap method to
suppress all non-maximal features (using the cv::bitwise function).

There's more...
Additional improvements can be made to the original Harris corner
algorithm. This section describes another corner detector found in
OpenCV, which expands the Harris detector to make its corners more
uniformly distributed across the image. As we will see, this operator
implements a generic interface defining the behavior of all feature
detection operators. This interface allows easy testing of different
interest point detectors within the same application.

Good features to track

With the advent of floating-point processors, the mathematical
simplification introduced to avoid eigenvalue decomposition has become
negligible, and consequently, the detection of Harris corners can be
made based on the explicitly computed eigenvalues. In principle, this
modification should not significantly affect the result of the detection,
but it avoids the use of the arbitrary k parameter. Note that two
functions exist that allow you to explicitly get the eigenvalues (and
eigenvectors) of the Harris covariance matrix; these are
cv::cornerEigenValsAndVecs and cv::cornerMinEigenVal.

A second modification addresses the problem of feature point clustering.
Indeed, in spite of the introduction of the local maxima condition,



interest points tend to be unevenly distributed across an image, showing
concentrations at highly textured locations. A solution to this problem is
to impose a minimum distance between two interest points. This can be
achieved using the following algorithm. Starting from the point with the
strongest Harris score (that is, with the largest minimum eigenvalue),
only accept interest points if they are located at, at least, a given
distance from the already accepted points. This solution is implemented
in OpenCV by the good-features-to-track (GFTT) operator, which is
thus named because the features it detects can be used as a good starting
set in visual tracking applications. This operator is deployed as follows:

    // Compute good features to track 
    std::vector<cv::KeyPoint> keypoints; 
    // GFTT detector 
    cv::Ptr<cv::GFTTDetector> ptrGFTT =  
        cv::GFTTDetector::create( 
                        500,   // maximum number of keypoints
                        0.01,  // quality level 
                        10);   //minimum allowed distance 
between points 
    // detect the GFTT 
    ptrGFTT->detect(image,keypoints); 

The first step is to create the feature detector using the appropriate static
function (here, cv::GFTTDetector::create) and the initialization
parameters. In addition to the quality-level threshold value, and the
minimum tolerated distance between interest points, the function also
uses a maximum number of points that can be returned (this is possible
since points are accepted in the order of strength). Calling this function
returns a OpenCV smart pointer to the detector instance. Once this
object constructed, its detect method can be called. Note that the
common interface also includes the definition of a cv::Keypoint class
that encapsulates the properties of each detected feature point. For the
Harris corners, only the position of the keypoints and its response
strength is relevant. The Detecting scale-invariant features recipe of
this chapter will discuss the other properties that can be associated with
a keypoint.

The preceding code produces the following result:



This approach increases the complexity of the detection, since it
requires the interest points to be sorted by their Harris score, but it also
clearly improves the distribution of the points across the image. Note
that this function also includes an optional flag, that requests Harris
corners to be detected using the classical corner score definition (using
the covariance matrix determinant and trace).

The OpenCV common interface for the feature detector defines an
abstract class called cv::Feature2D that basically imposes, among
others, the existence of a detect operation with the following signatures:

    void detect( cv::InputArray image,  
                 std::vector<KeyPoint>& keypoints,  
                 cv::InputArray mask ); 
 
    void detect( cv::InputArrayOfArrays images,                  
                 std::vector<std::vector<KeyPoint> >& 
keypoints,          
                 cv::InputArrayOfArrays masks ); 

The second method allows interest points to be detected in a vector of
images. The class also includes other methods such as the ones to
compute feature descriptors (to be discussed in the next chapter) and the



ones can read and write the detected points in a file.

See also
The classic article that describes the Harris operator by C. Harris
and M.J. Stephens,  A combined corner and edge detector, Alvey
Vision Conference, pp. 147-152, 1988
The article by J. Shi and C. Tomasi, Good features to track, Int.
Conference on Computer Vision and Pattern Recognition, pp. 593-
600, 1994, introduces this special feature
The article by K. Mikolajczyk and C. Schmid, Scale and Affine
invariant interest point detectors, International Journal of
Computer Vision, vol 60, no 1, pp. 63-86, 2004, proposes a multi-
scale and affine-invariant Harris operator



Detecting features quickly
The Harris operator proposed a formal mathematical definition for
corners (or more generally, interest points) based on the rate of intensity
changes in two perpendicular directions. Although this constitutes a
sound definition, it requires the computation of the image derivatives,
which is a costly operation, especially considering the fact that interest
point detection is often just the first step in a more complex algorithm.

In this recipe, we present another feature point operator, called
FAST (Features from Accelerated Segment Test). This one has been
specifically designed to allow quick detection of interest points in an
image, the decision to accept or not to accept a keypoint being based on
only a few pixel comparisons.

How to do it...
As seen in the last section of the previous recipe, Detecting corners in
an image, using the OpenCV common interface for feature point
detection makes the deployment of any feature point detectors easy. The
detector presented in this recipe is the FAST detector. As the name
suggests, it has been designed to quickly detect interest points in an
image:

    // vector of keypoints 
    std::vector<cv::KeyPoint> keypoints; 
    // FAST detector with a threshold of 40 
    cv::Ptr<cv::FastFeatureDetector> ptrFAST =
            cv::FastFeatureDetector::create(40); 
    // detect the keypoints 
    ptrFAST->detect(image,keypoints); 

Note that OpenCV also proposes a generic function to draw keypoints
on an image:

    cv::drawKeypoints(image,                      // original 
image 
          keypoints,                              // vector of 
keypoints 



          image,                                  // the output 
image 
          cv::Scalar(255,255,255),                // keypoint 
color 
          cv::DrawMatchesFlags::DRAW_OVER_OUTIMG);// drawing 
flag 

By specifying the chosen drawing flag, the keypoints are drawn over the
input image, thus producing the following output result:

An interesting option is to specify a negative value for the keypoint
color. In this case, a different random color will be selected for each
drawn circle.

How it works...
As in the case with the Harris point detector, the FAST feature algorithm
derives from the definition of what constitutes a corner. This time, this
definition is based on the image intensity around a putative feature
point. The decision to accept a keypoint is taken by examining a circle
of pixels centered at a candidate point. If an arc of contiguous points of
a length greater than three quarters of the circle perimeter in which all
pixels significantly differ from the intensity of the center point (being all



darker or all brighter) is found, then a keypoint is declared.

This is a simple test that can be computed quickly. Moreover, in its
original formulation, the algorithm uses an additional trick to further
speed up the process. Indeed, if we first test four points separated by 90
degrees on the circle (for example, top, bottom, right, and left points), it
can be easily shown that in order to satisfy the condition expressed
previously, at least three of these points must all be brighter or darker
than the central pixel.

If this is not the case, the point can be rejected immediately, without
inspecting additional points on the circumference. This is a very
effective test, since in practice, most of the image points will be rejected
by this simple 4-comparison test.

In principle, the radius of the circle of examined pixels could have been
a parameter of the method. However, it has been found that in practice,
a radius of 3 gives you both good results and high efficiency. There are,
then, 16 pixels that need to be considered on the circumference of the
circle, shown as follows:

The four points used for the pretest are pixels 1, 5, 9, and 13, and the
required number of contiguous darker or brighter points is 9. This



specific setting is often designated as the FAST-9 corner detector, and
this the one OpenCV uses by default. You can, in fact, specify which
type of FAST detector you want to use when you construct the detector
instance; there is also a setType method. The options are
cv::FastFeatureDetector::TYPE_5_8,
cv::FastFeatureDetector::TYPE_7_12, and
cv::FastFeatureDetector::TYPE_9_16.

To be considered as being significantly darker or brighter, the intensity
of a point must differ from the intensity of the central pixel by at least a
given amount; this value corresponds to the threshold parameter
specified when creating the detector instance. The larger this threshold
is, the fewer corner points will be detected.

As for Harris features, it is often better to perform non-maxima
suppression on the corners that have been found. Therefore, a corner
strength measure needs to be defined. Several alternative measures to
this can considered, and the one that has been retained is the following.
The strength of a corner is given by the sum of the absolute difference
between the central pixel and the pixels on the identified contiguous arc.
You can read the corner strength from the response attribute of the
cv::KeyPoint instances.

This algorithm results in very fast interest point detection and is
therefore the feature of choice when speed is a concern. This is the case,
for example, in real-time visual tracking or object-recognition
applications where several points must be tracked or matched in a live
video stream.

There's more...
Different strategies can be used to make feature detection more suitable
for your application.

For example, it is sometimes desirable to dynamically adapt the feature
detection such to obtain a predefined number of interest points. A simple
strategy to achieve this goal consists in using a permissive detection



threshold such that a large number of interest points is obtained. You
then simply have to extract the nth strongest points in the set. A
standard C++ function allows you to accomplish this:

    if (numberOfPoints < keypoints.size()) 
      std::nth_element(keypoints.begin(),
                       keypoints.begin() + numberOfPoints,
                       keypoints.end(),
                       [](cv::KeyPoint& a, cv::KeyPoint& b) { 
                       return a.response > b.response; }); 

Here, keypoints is your std::vector of detected interest points and
numberOfPoints is the desirable quantity of interest points. The last
parameter in this function is the lambda comparator used to extract the
best interest points. Note that if the number of detected interest points is
too low (that is, lower than the seek quantity), this means that you
should have used a lower threshold for detection. However, using a very
permissive threshold generally increases the computational load; there is
therefore a trade-off value that has to be identified.

Another issue that often arises when detecting features, is the uneven
distribution of the interest points over an image. Indeed, the keypoints
tend to agglomerate at highly textured areas of the image. For example,
here is the result obtained when detecting 100 interest points on our
church image:



As you can see, most feature points are on the upper and bottom parts of
the building. A common strategy used to obtain a better distribution of
the interest points in an image consists in dividing this one into a grid of
sub-images and perform an independent detection of each sub-image.
The following code performs this grid adapted detection:

    // The final vector of keypoints 
    keypoints.clear(); 
    // detect on each grid 
    for (int i = 0; i < vstep; i++) 
      for (int j = 0; j < hstep; j++) { 
        // create ROI over current grid 
        imageROI = image(cv::Rect(j*hsize, i*vsize, hsize, 
vsize)); 
        // detect the keypoints in grid 
        gridpoints.clear(); 
        ptrFAST->detect(imageROI, gridpoints); 
 
        // get the strongest FAST features 
        auto itEnd(gridpoints.end()); 
        if (gridpoints.size() > subtotal) {  
          // select the strongest features 
          std::nth_element(gridpoints.begin(),
                           gridpoints.begin() + subtotal, 
                           gridpoints.end(),



                           [](cv::KeyPoint& a,
                           cv::KeyPoint& b) { 
            return a.response > b.response; }); 
          itEnd = gridpoints.begin() + subtotal; 
        } 
 
        // add them to the global keypoint vector 
        for (auto it = gridpoints.begin(); it != itEnd; ++it) {  
          // convert to image coordinates 
          it->pt += cv::Point2f(j*hsize, i*vsize);  
          keypoints.push_back(*it); 
      } 
    } 

The key idea here is to use image ROIs in order to perform keypoint
detection inside each sub-image of the grid. The resulting detection
shows a more uniform keypoint distribution:

See also
OpenCV2 includes specialized adapted feature detection wrapper
classes; see, for example, cv::DynamicAdaptedFeatureDetector or
 GridAdaptedFeatureDetector
The article by E. Rosten and T. Drummond, Machine learning for



high-speed corner detection, International European Conference
on Computer Vision, pp. 430-443, 2006, describes the FAST feature
algorithm and its variants in detail



Detecting scale-invariant features
The view invariance of feature detection was presented as an important
concept in the introduction of this chapter. While orientation invariance,
which is the ability to detect the same points even if an image is rotated,
has been relatively well handled by the simple feature point detectors
that have been presented so far, the invariance to scale changes is more
difficult to achieve. To address this problem, the concept of scale-
invariant features has been introduced in computer vision. The idea here
is to not only have a consistent detection of keypoints no matter at
which scale an object is pictured, but to also have a scale factor
associated with each of the detected feature points. Ideally, for the same
object point featured at two different scales on two different images, the
ratio of the two computed scale factors should correspond to the ratio of
their respective scales. In recent years, several scale-invariant features
have been proposed, and this recipe presents one of them, the SURF
features. SURF stands for Speeded Up Robust Features, and as we will
see, they are not only scale-invariant features, but they also offer the
advantage of being computed efficiently.

How to do it...
The SURF feature detector is part of the opencv_contrib repository. To
use it, you must then have built the OpenCV library together with these
extra modules, as explained in Chapter 1 , Playing with Images. In
particular, we are interested here by the cv::xfeatures2d module that
gives us access to the cv::xfeatures2d::SurfFeatureDetector class. As
for the other detector, interest points are detected by first creating an
instance of the detector and then calling its detect method:

    // Construct the SURF feature detector object 
    cv::Ptr<cv::xfeatures2d::SurfFeatureDetector> ptrSURF =   
                
cv::xfeatures2d::SurfFeatureDetector::create(2000.0); 
    // detect the keypoints 
    ptrSURF->detect(image, keypoints); 



To draw these features, we again use the cv::drawKeypoints OpenCV
function but now with the
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS flag so that we can
visualize the associated scale factor:

    // Draw the keypoints with scale and orientation 
information 
    cv::drawKeypoints(image,                     // original 
image 
               keypoints,                        // vector of 
keypoints 
               featureImage,                     // the 
resulting image 
               cv::Scalar(255,255,255),          // color of 
the points 
               cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS); 

The resulting image with the detected features is then as follows:

Here, the size of the keypoint circles resulting from the use of the
cv::DrawMatchesFlags::DRAW_RICH_KEYPOINTS flag is proportional to
the computed scale of each feature. The SURF algorithm also associates
an orientation with each feature to make them invariant to rotations.
This orientation is illustrated by a radial line inside each drawn circle.



If we take another picture of the same object but at a different scale, the
feature-detection result is as follows:

By carefully observing the detected keypoints on the two images, it can
be seen that the change in the size of corresponding circles is often
proportional to the change in scale. As an example, consider the two
windows on the right part of the church; in both images, a SURF feature
has been detected at that location, and the two corresponding circles (of
different sizes) contain the same visual elements. Of course, this is not
the case for all features, but as we will discover in the next chapter, the
repeatability rate is sufficiently high to allow good matching between the
two images.

How it works...
In Chapter 6 , Filtering the Images, we learned that the derivatives of
an image can be estimated using Gaussian filters. These filters make use
of a σ parameter, which defines the aperture (size) of the kernel. As we
saw, this σ parameter corresponds to the variance of the Gaussian
function used to construct the filter, and it then implicitly defines a scale
at which the derivative is evaluated. Indeed, a filter that has a larger σ



value smooths out the finer details of the image. This is why we can say
that it operates at a coarser scale.

Now, if we compute, for instance, the Laplacian of a given image point
using Gaussian filters at different scales, then different values are
obtained. Looking at the evolution of the filter response for different
scale factors, we obtain a curve that eventually reaches a maximum
value at a given σ value. If we extract this maximum value for two
images of the same object taken at two different scales, the ratio of
these two σ maxima should correspond to the ratio of the scales at which
the images were taken. This important observation is at the core of the
scale-invariant feature extraction process. That is, scale-invariant
features should be detected as the local maxima in both the spatial space
(in the image) and the scale space (as obtained from the derivative filters
applied at different scales).

SURF implements this idea by proceeding as follows. First, to detect the
features, the Hessian matrix is computed at each pixel. This matrix
measures the local curvature of a function and is defined as follows:

The determinant of this matrix gives you the strength of this curvature.
The idea, therefore, is to define corners as image points with high local



curvature (that is, high variation in more than one direction). Since it is
composed of second-order derivatives, this matrix can be computed
using Laplacian of Gaussian kernels of a different scale, that is, for
different values of σ. This Hessian then becomes a function of three
variables, H(x,y,σ). Therefore, a scale-invariant feature is declared
when the determinant of this Hessian reaches a local maximum in both
spatial and scale space (that is, 3x3x3 non-maxima suppression needs to
be performed). Note that in order to be considered as a valid point, this
determinant must have a minimum value as specified by the first
parameter of the create method of the
cv::xfeatures2d::SurfFeatureDetector class.

However, the calculation of all of these derivatives at different scales is
computationally costly. The objective of the SURF algorithm is to make
this process as efficient as possible. This is achieved by using
approximated Gaussian kernels that involve only few integer additions.
These have the following structure:

The kernel on the left-hand side is used to estimate the mixed second
derivatives, while the one on the right-hand side estimates the second
derivative in the vertical direction. A rotated version of this second
kernel estimates the second derivative in the horizontal direction. The
smallest kernels have a size of 9x9 pixels, corresponding to σ≈1.2. To
obtain a scale-space representation, kernels of increasing size are
successively applied. The exact number of filters that are applied can be
specified by additional parameters of the
cv::xfeatures2d::SurfFeatureDetector::create method. By default,
12 different sizes of kernels are used (going up to size 99x99). Note that,
as explained in Chapter 4 , Counting the Pixels with Histograms, the
use of integral images guarantees that the sum inside each lobe of each



filter can be computed by using only three additions independent of the
size of the filter.

Once the local maxima are identified, the precise position of each
detected interest point is obtained through interpolation in both scale
and image space. The result is then a set of feature points that are
localized at sub-pixel accuracy and to which a scale value is associated.

There's more...
The SURF algorithm has been developed as an efficient variant of
another well-known scale-invariant feature detector called SIFT (Scale-
Invariant Feature Transform).

The SIFT feature-detection algorithm

SIFT also detects features as local maxima in the image and scale space,
but uses the Laplacian filter response instead of the Hessian
determinant. This Laplacian is computed at different scales (that is,
increasing values of σ) using the Difference of Gaussian filters, as
explained in Chapter 6 , Filtering the Images. To improve efficiency,
each time the value of σ is doubled, the size of the image is reduced by
two. Each pyramid level corresponds to an octave, and each scale is a
layer. There are typically three layers per octave.

The following figure illustrates a pyramid of two octaves in which the
four Gaussian-filtered images of the first octave produce three DoG
layers:



The detection of the SIFT features proceeds in a way very similar to
SURF:

    // Construct the SIFT feature detector object 
    cv::Ptr<cv::xfeatures2d::SiftFeatureDetector> ptrSIFT =    
                         
cv::xfeatures2d::SiftFeatureDetector::create(); 
    // detect the keypoints 
    ptrSIFT->detect(image, keypoints); 

Here, we use all the default arguments to construct the detector, but you
can specify the number of desired SIFT points (the strongest ones are
kept), the number of layers per octave, and the initial value for σ. As
you can see in the following image, using three octaves for the detection
(default value) leads to a quite broad range of scales:



Since the computation of the feature point is based on floating-point
kernels, SIFT is generally considered to be more accurate in terms of
feature localization in regards to space and scale. For the same reason, it
is also more computationally expensive, although this relative efficiency
depends on each particular implementation.

Note that in this recipe we used the
cv::xfeatures2d::SurfFeatureDetector and the
cv::xfeatures2d::SiftFeatureDetector classes to make explicit the
fact that we are using them as interest point detectors. Equivalently, we
could have used the cv::xfeatures2d::SURF and
cv::xfeatures2d::SIFT classes (they are type equivalent). Indeed, the
SURF and SIFT operators cover both the detection and the description
of interest points. Interest point description is the object of the next
chapter.

As a final remark, it is important to mention the SURF and SIFT
operators have been patented, and as such, their use in commercial
applications might be subject to licensing agreements. This restriction is
one of the reasons why these feature detectors are found in the
cv::xfeatures2d package.



See also
The Computing the Laplacian of an image recipe in Chapter 6 ,
Filtering the Images, gives you more details on the Laplacian-of-
Gaussian operator and the use of the difference of Gaussians
The Counting pixels with integral images recipe in Chapter 4 ,
Counting the Pixels with Histograms explains how integral images
accelerate the computation of sums of pixels
The Describing and matching local intensity patterns recipe in
Chapter 9 , Describing and Matching Interest Points, explains how
these scale-invariant features can be described for robust image
matching
The article SURF: Speeded Up Robust Features by H. Bay, A. Ess,
T. Tuytelaars and L. Van Gool in Computer Vision and Image
Understanding, vol. 110, No. 3, pp. 346-359, 2008, describes the
SURF feature algorithm
The pioneering work by D. Lowe,  Distinctive Image Features from
Scale Invariant Features in International Journal of Computer
Vision, Vol. 60, No. 2, 2004, pp. 91-110, describes the SIFT
algorithm



Detecting FAST features at
multiple scales
FAST has been introduced as a quick way to detect keypoints in an
image. With SURF and SIFT, the emphasis was on designing scale-
invariant features. More recently, new interest point detectors have been
proposed with the objective of achieving both fast detection and
invariance to scale changes. This recipe presents the Binary Robust
Invariant Scalable Keypoints (BRISK) detector. It is based on the
FAST feature detector that we described in a previous recipe of this
chapter. Another detector, called ORB (Oriented FAST and Rotated
BRIEF), will also be discussed at the end of this recipe. These two
feature point detectors constitute an excellent solution when fast and
reliable image matching is required. They are especially efficient when
they are used in conjunction with their associated binary descriptors, as
will be discussed in Chapter 9 , Describing and Matching Interest
Points.

How to do it...
Following what we did in the previous recipes, we first create an
instance of the detector, and then the detect method is called on an
image:

    // Construct the BRISK feature detector object 
    cv::Ptr<cv::BRISK> ptrBRISK = cv::BRISK::create(); 
    // detect the keypoints 
    ptrBRISK->detect(image, keypoints); 

The image result shows the BRISK keypoints detected at multiple
scales:



How it works...
BRISK is not only a feature point detector; the method also includes a
procedure that describes the neighborhood of each detected keypoint.
This second aspect will be the subject of the next chapter. We describe
here how the quick detection of keypoints at multiple scales is
performed using BRISK.

In order to detect interest points at different scales, the method first
builds an image pyramid through two down-sampling processes. The
first process starts from the original image size and downscales it by half
at each layer (or octave). Secondly, in-between layers are created by
down-sampling the original image by a factor of 1.5, and from this
reduced image, additional layers are generated through successive half-
sampling.



The FAST feature detector is then applied on all the images of this
pyramid. Keypoint extraction is based on a criterion that is similar to the
one used by SIFT. First, an acceptable interest point must be a local
maximum, when comparing its strength with one of its eight spatial
neighbors. If this is the case, the point is then compared with the scores
of the neighboring points in the layers above and below; if its score is
higher in scale as well, then it is accepted as an interest point. A key
aspect of BRISK resides in the fact that the different layers of the
pyramid have different resolutions. The method requires interpolation in
both scale and space in order to locate each keypoint precisely. This
interpolation is based on the FAST keypoint scores. In space, the
interpolation is performed on a 3x3 neighborhood. In scale, it is
computed by fitting a 1D parabola along the scale axis through the
current point and its two neighboring local keypoints in the layers above
and below; this keypoint localization in scale is illustrated in the
preceding figure. As a result, even if the FAST keypoint detection is
performed at discrete image scales, the resulting detected scales
associated with each keypoint are continuous values.

The cv::BRISK detector has two main parameters. The first one is a
threshold value for FAST keypoints to be accepted, and the second
parameter is the number of octaves that will be generated in the image
pyramid; in our example, we used 5 octaves, which explains the large
number of scales in the detected keypoints.



There's more...
BRISK is not the only multiscale, fast detector that is proposed in
OpenCV. Another one is the ORB feature detector that can also perform
efficient keypoint detection.

The ORB feature-detection algorithm

ORB stands for Oriented FAST and Rotated BRIEF. The first part of this
acronym refers to the keypoint detection part, while the second part
refers to the descriptor that is proposed by ORB. Here, we focus on the
detection method; the descriptor will be presented in the next chapter.

As with BRISK, ORB first creates an image pyramid. This one is made
of a number of layers each of which being a down-sampled version of
the previous one by a certain scale factor (typically, 8 scales and 1.2
scale factor reduction; these are the default parameter values when
creating a cv::ORB detector). The strongest N keypoints are then
accepted where the keypoint score is defined by the Harris cornerness
measure, as defined in the first recipe of this chapter (the authors of this
method found the Harris score to be a more reliable measure than the
usual FAST corner strength).

An original aspect of the ORB detector resides in the fact that an
orientation is associated with each detected interest point. As we will
see in the next chapter, this information will be useful to align the
descriptors of keypoints detected in different images. In the Computing
components' shape descriptors recipe of Chapter 7 , Extracting Lines,
Contours, and Components, we introduced the concept of image
moments and in particular, we showed you how the centroid of a
component can be computed from its first three moments. ORB
proposes to use the orientation of the centroid of a circular
neighborhood around the keypoint. Since, FAST keypoints, by
definition, always have a decentered centroid, the angle of the line that
joins the central point and the centroid will always be well defined.

The ORB features are detected as follows:



    // Construct the ORB feature detector object 
    cv::Ptr<cv::ORB> ptrORB =  
      cv::ORB::create(75,  // total number of keypoints 
                      1.2, // scale factor between layers 
                      8);  // number of layers in pyramid 
    // detect the keypoints 
    ptrORB->detect(image, keypoints); 

This call produces the following result:

As can be seen, since the keypoints are independently detected on each
pyramid layer, the detector tends to repeatedly detect the same feature
point at different scales.

See also
The Matching keypoints with binary descriptors recipe in Chapter 9
, Describing and Matching Interest Points, explains how simple
binary descriptors can be used for efficient robust matching of these
features
The article BRISK: Binary Robust Invariant Scalable Keypoint by
S. Leutenegger, M. Chli and R. Y. Siegwart in IEEE International
Conference on Computer Vision, pp. 2448--2555, 2011, describes



the BRISK feature algorithm
The article ORB: an efficient alternative to SIFT or SURF by E.
Rublee, V. Rabaud, K. Konolige and G. Bradski in IEEE
International Conference on Computer Vision, pp.2564-2571, 2011,
describes the ORB feature algorithm



Chapter 9. Describing and
Matching Interest Points
In this chapter, we will cover the following recipes:

Matching local templates
Describing and matching local intensity patterns
Matching keypoints with binary descriptors

Introduction
In the previous chapter, we learned how to detect special points in an
image with the objective of subsequently performing local image
analysis. These keypoints are chosen to be distinctive enough so that if a
keypoint is detected on the image of an object, then the same point is
expected to be detected in other images depicting the same object. We
also described some more sophisticated interest point detectors that can
assign a representative scale factor and/or an orientation to a keypoint.
As we will see in this chapter, this additional information can be useful
to normalize scene representations with respect to viewpoint variations.

In order to perform image analysis based on interest points, we now
need to build rich representations that uniquely describe each of these
keypoints. This chapter looks at different approaches that have been
proposed to extract descriptors from interest points. These descriptors
are generally 1D or 2D vectors of binary, integer, or floating-point
numbers that describe a keypoint and its neighborhood. A good
descriptor should be distinctive enough to uniquely represent each
keypoint of an image; it should be robust enough to have the same
points represented similarly in spite of possible illumination changes or
viewpoint variations. Ideally, it should also be compact to reduce
memory load and improve computational efficiency.

One of the most common operations accomplished with keypoints is
image matching. This task could be performed, for example, to relate



two images of the same scene or to detect the occurrence of a target
object in an image. Here, we will study some basic matching strategies, a
subject that will be further discussed in the next chapter.



Matching local templates
Feature point matching is the operation by which one can put in
correspondence points from one image to points from another image (or
points from an image set). Image points should match when they
correspond to the image of the same scene element in the real world.

A single pixel is certainly not sufficient to make a decision on the
similarity of two keypoints. This is why an image patch around each
keypoint must be considered during the matching process. If two
patches correspond to the same scene element, then one might expect
their pixels to exhibit similar values. A direct pixel-by-pixel comparison
of pixel patches is the solution presented in this recipe. This is probably
the simplest approach to feature point matching, but as we will see, it is
not the most reliable one. Nevertheless, in several situations, it can give
good results.

How to do it...
Most often, patches are defined as squares of odd sizes centered at the
keypoint position. The similarity between two square patches can then
be measured by comparing the corresponding pixel intensity values
inside the patches. A simple Sum of Squared Differences (SSD) is a
popular solution. The feature matching strategy then works as follows.
First, the keypoints are detected in each image. Here, we use the FAST
detector:

    // Define feature detector 
    cv::Ptr<cv::FeatureDetector> ptrDetector;   // generic 
detector 
    ptrDetector= // we select the FAST detector 
                cv::FastFeatureDetector::create(80);    
 
    // Keypoint detection 
    ptrDetector->detect(image1,keypoints1); 
    ptrDetector->detect(image2,keypoints2); 

Note how we used the generic cv::Ptr<cv::FeatureDetector> pointer



type, which can refer to any feature detector. One can then test this
code on different interest point detectors just by changing the detector
to be used when calling the detect function.

The second step is to define a rectangle of, for example, size 11x11 that
will be used to define patches around each keypoint:

    // Define a square neighborhood 
    const int nsize(11);                       // size of the 
neighborhood 
    cv::Rect neighborhood(0, 0, nsize, nsize); // 11x11 
    cv::Mat patch1; 
    cv::Mat patch2; 

The keypoints in one image are compared with all the keypoints in the
other image. For each keypoint of the first image, the most similar patch
in the second image is identified. This process is implemented using two
nested loops, as shown in the following code:

    // For all keypoints in first image 
    // find best match in second image 
    cv::Mat result; 
    std::vector<cv::DMatch> matches; 
 
    // for all keypoints in image 1 
    for (int i=0; i<keypoints1.size(); i++) { 
 
      // define image patch 
      neighborhood.x = keypoints1[i].pt.x-nsize/2; 
      neighborhood.y = keypoints1[i].pt.y-nsize/2; 
 
      // if neighborhood of points outside image, 
      // then continue with next point 
      if (neighborhood.x<0 || neighborhood.y<0 ||   
          neighborhood.x+nsize >= image1.cols || 
          neighborhood.y+nsize >= image1.rows) 
      continue; 
 
      // patch in image 1 
      patch1 = image1(neighborhood); 
 
      // to contain best correlation value; 
      cv::DMatch bestMatch; 
 



      // for all keypoints in image 2 
      for (int j=0; j<keypoints2.size(); j++) { 
 
        // define image patch 
        neighborhood.x = keypoints2[j].pt.x-nsize/2; 
        neighborhood.y = keypoints2[j].pt.y-nsize/2; 
 
        // if neighborhood of points outside image, 
        // then continue with next point 
        if (neighborhood.x<0 || neighborhood.y<0 ||   
            neighborhood.x + nsize >= image2.cols ||   
            neighborhood.y + nsize >= image2.rows) 
        continue; 
 
       // patch in image 2 
       patch2 = image2(neighborhood); 
 
       // match the two patches 
       cv::matchTemplate(patch1,patch2,result, cv::TM_SQDIFF); 
 
       // check if it is a best match 
       if (result.at<float>(0,0) < bestMatch.distance) { 
 
         bestMatch.distance= result.at<float>(0,0); 
         bestMatch.queryIdx= i; 
         bestMatch.trainIdx= j; 
       } 
     } 
 
     // add the best match 
     matches.push_back(bestMatch); 
   } 

Note the use of the cv::matchTemplate function, which we will describe
in the next section and that computes the patch similarity score. When a
potential match is identified, this match is represented through the use of
a cv::DMatch object. This utility class stores the index of the two
matching keypoints as well as their similarity score.

The more similar the two image patches are, the higher the probability
that these patches correspond to the same scene point. This is why it is a
good idea to sort the resulting match points by their similarity scores:

    // extract the 25 best matches 



    std::nth_element(matches.begin(),   
                     matches.begin() + 25,matches.end()); 
    matches.erase(matches.begin() + 25,matches.end()); 

You can then simply retain the matches that pass a given similarity
threshold. Here, we chose to keep only the N best matching points (we
use N=25 to facilitate the visualization of the matching results).

Interestingly, there is an OpenCV function that can display the matching
results by concatenating the two images and joining each corresponding
point by a line. The function is used as follows:

    //Draw the matching results 
    cv::Mat matchImage; 
    cv::drawMatches(image1,keypoints1,         // first image 
                    image2,keypoints2,         // second image 
                    matches,                   // vector of 
matches 
                    cv::Scalar(255,255,255),   // color of 
lines 
                    cv::Scalar(255,255,255));  // color of 
points 

Here are the match results:



How it works...
The results obtained are certainly not perfect, but a visual inspection of
the matched image points shows a number of successful matches. It can
also be observed that the symmetry of the two towers of the church
causes some confusion. Also, since we tried to match all the points in
the left image with the ones in the right image, we obtained cases where
a point in the right image was matched with multiple points in the left
image. This is an asymmetrical matching situation that can be corrected
by, for example, keeping only the match with the best score for each
point in the right image.

To compare the image patches from each image, here we used a simple
criterion, that is, a pixel-per-pixel sum of the squared difference
specified using the cv::TM_SQDIFF flag. If we compare the point (x,y) of



image I1 with a putative match at (x',y') in image I2, then the
similarity measure is as follows:

Here, the sum of the (i,j) point provides the offset to cover the square
template centered at each point. Since the difference between adjacent
pixels in similar patches should be small, the best-matching patches
should be the ones with the smallest sum. This is what is done in the
main loop of the matching function; that is, for each keypoint in one
image, we identify the keypoint in the other image that gives the lowest
sum of the squared difference. We can also reject matches for which this
sum is over a certain threshold value. In our case, we simply sort them
from the most similar to the least similar ones.

In our example, the matching was done with square patches of size
11x11. A larger neighborhood creates more distinctive patches, but it
also makes them more sensitive to local scene variations.

Comparing two image windows from a simple sum of square differences
will work relatively well as long as the two images show the scene from
similar points of views and similar illumination. Indeed, a simple lighting
change will increase or decrease all the pixel intensities of a patch,
resulting in a large square difference. To make matching more invariant
to lighting changes, other formulae could be used to measure the
similarity between two image windows. OpenCV offers a number of
these. A very useful formula is the normalized sum of square differences
(the cv::TM_SQDIFF_NORMED flag):



Other similarity measures are based on the concept of correlation,
defined in the signal processing theory, as follows (with the
cv::TM_CCORR flag):

This value will be maximal when two patches are similar.

The identified matches are stored in a vector of cv::DMatch instances.
Essentially, the cv::DMatch data structure contains a first index that
refers to an element in the first vector of keypoints and a second index
that refers to the matching feature in the second vector of keypoints. It
also contains a real value that represents the distance between the two
matched descriptors. This distance value is used in the definition of
operator< when comparing two cv::DMatch instances.

When we drew the matches in the previous section, we wanted to limit
the number of lines to make the results more readable. Therefore, we
only displayed the 25 matches that had the lowest distance. To do this,
we used the std::nth_element function, which positions the Nth



element at the Nth position, with all smaller elements placed before this
element. Once this is done, the vector is simply purged of its remaining
elements.

There's more...
The cv::matchTemplate function is at the heart of our feature matching
method. We used it here in a very specific way, which is to compare two
image patches. However, this function has been designed to be used in a
more generic way.

Template matching

A common task in image analysis is to detect the occurrence of a
specific pattern or object in an image. This can be done by defining a
small image of the object, a template, and searching for a similar
occurrence in a given image. In general, the search is limited to a region
of interest inside which we think the object can be found. The template
is then slid over this region, and a similarity measure is computed at
each pixel location. This is the operation performed by the
cv::matchTemplate function. The input is a template image of a small
size and an image over which the search is performed.

The result is a cv::Mat function of floating-point values that correspond
to the similarity score at each pixel location. If the template is of size
MxN and the image is of size WxH, then the resulting matrix will have a
size of (W-M+1)x(H-N+1). In general, you will be interested in the
location of the highest similarity; so, the typical template-matching code
will look as follows (assuming that the target variable is our template):

    // define search region 
    cv::Mat roi(image2, // here top half of the image 
    cv::Rect(0,0,image2.cols,image2.rows/2)); 
 
    // perform template matching 
    cv::matchTemplate(roi,            // search region 
                      target,         // template 
                      result,         // result 
                      cv::TM_SQDIFF); // similarity measure 
 



    // find most similar location 
    double minVal, maxVal; 
    cv::Point minPt, maxPt; 
    cv::minMaxLoc(result, &minVal, &maxVal, &minPt, &maxPt); 
 
    // draw rectangle at most similar location 
    // at minPt in this case 
    cv::rectangle(roi, cv::Rect(minPt.x, minPt.y,  
                                target.cols, target.rows), 
255); 

Remember that this is a costly operation, so you should limit the search
area and use a template having a size of only a few pixels.

See also
The next recipe, Describing and matching local intensity patterns,
describes the cv::BFMatcher class, which implements the matching
strategy that was used in this recipe



Describing and matching local
intensity patterns
The SURF and SIFT keypoint detection algorithms, discussed in Chapter
8 , Detecting Interest Points, define a location, an orientation, and a
scale for each of the detected features. The scale factor information is
useful for defining the size of a window of analysis around each feature
point. Thus, the defined neighborhood would include the same visual
information no matter at what scale of the object to which the feature
belongs has been pictured. This recipe will show you how to describe an
interest point's neighborhood using feature descriptors. In image
analysis, the visual information included in this neighborhood can be
used to characterize each feature point in order to make each point
distinguishable from the others. Feature descriptors are usually N-
dimensional vectors that describe a feature point in a way that is
invariant to change in lighting and to small perspective deformations.
Generally, descriptors can be compared using simple distance metrics,
for example, the Euclidean distance. Therefore, they constitute a
powerful tool that can be used in object matching applications.

How to do it...
The cv::Feature2D abstract class defines a number of member functions
that are used to compute the descriptors of a list of keypoints. As most
feature-based methods include both a detector and a descriptor
component, the associated classes include both a detect function (to
detect the interest points) and a compute function (to compute their
descriptors). This is the case of the cv::SURF and cv::SIFT classes. Here
is, for example, how you can detect and describe feature points in two
images using one instance of cv::SURF:

    // Define keypoints vector 
    std::vector<cv::KeyPoint> keypoints1; 
    std::vector<cv::KeyPoint> keypoints2; 
 
    // Define feature detector 



    cv::Ptr<cv::Feature2D> ptrFeature2D =     
                          
cv::xfeatures2d::SURF::create(2000.0); 
 
    // Keypoint detection 
    ptrFeature2D->detect(image1,keypoints1); 
    ptrFeature2D->detect(image2,keypoints2); 
 
    // Extract the descriptor 
    cv::Mat descriptors1; 
    cv::Mat descriptors2; 
    ptrFeature2D->compute(image1,keypoints1,descriptors1); 
    ptrFeature2D->compute(image2,keypoints2,descriptors2); 

For SIFT, you simply call the cv::SIFT::create function. The result of
the computation of the interest point descriptors is a matrix (that is, a
cv::Mat instance) that will contain as many rows as the number of
elements in the keypoint vector. Each of these rows is an N-dimensional
descriptor vector. In the case of the SURF descriptor, it has a default
size of 64, and for SIFT, the default dimension is 128. This vector
characterizes the intensity pattern surrounding a feature point. The more
similar the two feature points, the closer their descriptor vectors should
be. Note that you do not have to necessarily use the SURF (SIFT)
descriptor with SURF (SIFT) points; detectors and descriptors can be
used in any combination.

These descriptors will now be used to match our keypoints. Exactly as
we did in the previous recipe, each feature descriptor vector in the first
image is compared to all the feature descriptors in the second image.
The pair that obtains the best score (that is, the pair with the lowest
distance between the two descriptor vectors) is then kept as the best
match for that feature. This process is repeated for all the features in the
first image. Very conveniently, this process is implemented in OpenCV in
the cv::BFMatcher class, so we do not need to re-implement the double
loops that we previously built. This class is used as follows:

    // Construction of the matcher  
    cv::BFMatcher matcher(cv::NORM_L2); 
    // Match the two image descriptors 
    std::vector<cv::DMatch> matches; 
    matcher.match(descriptors1,descriptors2, matches); 



This class is a subclass of the cv::DescriptorMatcher class that defines
the common interface for different matching strategies. The result is a
vector of the cv::DMatch instances.

With the current Hessian threshold for SURF, we obtained 74 keypoints
for the first image and 71 for the second. The brute-force approach will
then produce 74 matches. Using the cv::drawMatches class as in the
previous recipe produces the following image:

As it can be seen, several of these matches correctly link a point on the
left-hand side with its corresponding point on the right-hand side. You
might notice some errors; some of these are due to the fact that the
observed building has a symmetrical facade, which makes some of the
local matches ambiguous. For SIFT, with the same number of keypoints,
we obtained the following match result:



How it works...
Good feature descriptors must be invariant to small changes in
illumination and viewpoint and to the presence of image noise.
Therefore, they are often based on local intensity differences. This is the
case for the SURF descriptors, which locally apply the following simple
kernels around a keypoint:

The first kernel simply measures the local intensity difference in the



horizontal direction (designated as dx), and the second measures this
difference in the vertical direction (designated as dy). The size of the
neighborhood used to extract the descriptor vector is generally defined
as 20 times the scale factor of the feature (that is, 20σ). This square
region is then split into 4x4 smaller square subregions. For each
subregion, the kernel responses (dx and dy) are computed at 5x5
regularly-spaced locations (with the kernel size being 2σ). All of these
responses are summed up as follows in order to extract four descriptor
values for each subregion:

Since there are 4x4=16 subregions, we have a total of 64 descriptor
values. Note that in order to give more importance to the neighboring
pixels, that is, values closer to the keypoint, the kernel responses are
weighted by a Gaussian centered at the keypoint location (with σ=3.3).

The dx and dy responses are also used to estimate the orientation of the
feature. These values are computed (with a kernel size of 4σ) within a
circular neighborhood of radius 6σ at locations regularly spaced by
intervals of σ. For a given orientation, the responses inside a certain
angular interval (π/3) are summed, and the orientation giving the longest
vector is defined as the dominant orientation.

SIFT is a richer descriptor that uses an image gradient instead of simple
intensity differences. It also splits the square neighborhood around each
keypoint into 4x4 subregions (it is also possible to use 8x8 or 2x2
subregions). Inside each of these regions, a histogram of gradient
orientations is built. The orientations are discretized into 8 bins, and
each gradient orientation entry is incremented by a value proportional to
the gradient magnitude.



This is illustrated by the following figure, inside which each star-shaped
arrow set represents a local histogram of gradient orientations:

These 16 histograms of 8 bins each concatenated together then produce
a descriptor of 128 dimensions. Note that as for SURF, the gradient
values are weighted by a Gaussian filter centered at the keypoint
location in order to make the descriptor less sensitive to sudden changes
in gradient orientations at the perimeter of the defined neighborhood.
The final descriptor is then normalized to make the distance
measurement more consistent.

With SURF and SIFT features and descriptors, scale-invariant matching
can be achieved. Here is an example that shows the SURF match result
for two images at different scales (here, the 50 best matches have been
displayed):



Note that the cv::Feature2D class includes a convenient member
function that detects the interest points and compute their descriptors at
the same time, for example:

    ptrFeature2D->detectAndCompute(image, cv::noArray(),  
                                   keypoints, descriptors); 

There's more...
The match result produced by any matching algorithm always contains a
significant number of incorrect matches. In order to improve the quality
of the match set, there exist a number of strategies. Three of them are
discussed here.

Cross-checking matches

A simple approach to validating the matches obtained is to repeat the



same procedure a second time, but this time, each keypoint of the
second image is compared with all the keypoints of the first image. A
match is considered valid only if we obtain the same pair of keypoints in
both directions (that is, each keypoint is the best match of the other).
The cv::BFMatcher function gives the option to use this strategy. It is
indeed included as a flag; when set to true, it forces the function to
perform the reciprocal match cross-check:

    cv::BFMatcher matcher2(cv::NORM_L2,    // distance measure 
                           true);          // cross-check flag 

The improved match results are as shown in the following image (in the
case of SURF):

The ratio test



We have already noted that repetitive elements in scene objects create
unreliable results because of the ambiguity in matching visually similar
structures. What happens in such cases is that a keypoint will match well
with more than one other keypoint. Since the probability of selecting the
wrong correspondence is high, it might be preferable to reject a match in
these ambiguous cases.

To use this strategy, we then need to find the best two matching points of
each keypoint. This can be done by using the knnMatch method of the
cv::DescriptorMatcher class. Since we want only two best matches, we
specify k=2:

    // find the best two matches of each keypoint 
    std::vector<std::vector<cv::DMatch>> matches; 
    matcher.knnMatch(descriptors1,descriptors2,  
                     matches, 2);  // find the k best matches 

The next step is to reject all the best matches with a matching distance
similar to that of their second best match. Since knnMatch produces a
std::vector class of std::vector (this second vector is of size k), we do
this by looping over each keypoint match and perform a ratio test, that
is, computing the ratio of the second best distance over the best distance
(this ratio will be one if the two best distances are equal). All matches
that have a high ratio are judged ambiguous and are therefore rejected.
Here is how we can do it:

    //perform ratio test 
    double ratio= 0.85; 
    std::vector<std::vector<cv::DMatch>>::iterator it; 
    for (it= matches.begin(); it!= matches.end(); ++it) { 
 
      // first best match/second best match 
      if ((*it)[0].distance/(*it)[1].distance < ratio) { 
        // it is an acceptable match 
        newMatches.push_back((*it)[0]); 
      } 
    } 
    // newMatches is the updated match set 

The initial match set made up of 74 pairs is now reduced to 23 pairs:



Distance thresholding

An even simpler strategy consists of rejecting matches for which the
distance between their descriptors is too high. This is done using the
radiusMatch method of the cv::DescriptorMatcher class:

    // radius match 
    float maxDist= 0.4; 
    std::vector<std::vector<cv::DMatch>> matches2; 
    matcher.radiusMatch(descriptors1, descriptors2, matches2, 
maxDist); 
                       // maximum acceptable distance 
                       // between the 2 descriptors 

The result is again a std::vector instance of std::vector because the
method will retain all the matches with a distance smaller than the
specified threshold. This means that a given keypoint might have more



than one matching point in the other image. Conversely, other keypoints
will not have any matches associated with them (the corresponding inner
std::vector class will then have a size of 0). For our example, the result
is a match set of 50 pairs:

Obviously, you can combine all these strategies in order to improve your
matching results.

See also
The Detecting scale-invariant features recipe in Chapter 8 ,
Detecting Interest Points, presents the associated SURF and SIFT
feature detectors and provides more references on the subject
The Matching images using random sample consensus recipe in
Chapter 10 , Estimating Projective Relations in Images, explains
how to use the image and the scene geometry in order to obtain a



match set of even better quality
The Detecting objects and peoples with Support Vector Machines
and histograms of oriented gradients recipe in Chapter 14 ,
Learning from Examples, describes the HOG, another descriptor
similar to SIFT
The article Matching feature points in stereo pairs: A comparative
study of some matching strategies by E. Vincent and R. Laganière
in Machine, Graphics and Vision, pp. 237-260, 2001, describes
other simple matching strategies that could be used to improve the
quality of the match set



Matching keypoints with binary
descriptors
In the previous recipe, we learned how to describe a keypoint using rich
descriptors extracted from the image intensity gradient. These
descriptors are floating-point vectors that have a dimension of 64, 128,
or sometimes even longer. This makes them costly to manipulate. In
order to reduce the memory and computational load associated with
these descriptors, the idea of using descriptors composed of a simple
sequence of bits (0s and 1s) has been introduced. The challenge here is
to make them easy to compute and yet keep them robust to scene and
viewpoint changes. This recipe describes some of these binary
descriptors. In particular, we will look at the ORB and BRISK
descriptors for which we presented their associated feature point
detectors in Chapter 8 , Detecting Interest Points.

How to do it...
Thanks to the common interface of the OpenCV detectors and
descriptors, using a binary descriptor such as ORB is no different from
using descriptors such as SURF and SIFT. The complete feature-based
image matching sequence is then as follows:

    // Define keypoint vectors and descriptors 
    std::vector<cv::KeyPoint> keypoints1; 
    std::vector<cv::KeyPoint> keypoints2; 
    cv::Mat descriptors1; 
    cv::Mat descriptors2; 
 
    // Define feature detector/descriptor 
    // Construct the ORB feature object 
    cv::Ptr<cv::Feature2D> feature = cv::ORB::create(60); 
                           // approx. 60 feature points 
 
    // Keypoint detection and description 
    // Detect the ORB features 
    feature->detectAndCompute(image1, cv::noArray(),  
                              keypoints1, descriptors1); 



    feature->detectAndCompute(image2, cv::noArray(),  
                              keypoints2, descriptors2); 
 
    // Construction of the matcher  
    cv::BFMatcher matcher(cv::NORM_HAMMING); // always use 
hamming norm 
    // for binary descriptors 
    // Match the two image descriptors 
    std::vector<cv::DMatch> matches; 
    matcher.match(descriptors1, descriptors2, matches); 

The only difference resides in the use of the Hamming norm (the
cv::NORM_HAMMING flag), which measures the distance between two
binary descriptors by counting the number of bits that are dissimilar. On
many processors, this operation is efficiently implemented by using an
exclusive OR operation, followed by a simple bit count. The matching
results are the following:



Similar results will be obtained with another popular binary feature
detector/descriptor: BRISK. In this case, the cv::Feature2D instance is
created by the cv::BRISK::create call. As we learned in the previous
chapter, its first parameter is a threshold that controls the number of
detected points.

How it works...
The ORB algorithm detects oriented feature points at multiple scales.
Based on this result, the ORB descriptor extracts a representation of
each keypoint by using simple intensity comparisons. In fact, ORB
builds on a previously proposed descriptor called BRIEF. This later
creates a binary descriptor by simply selecting a random pair of points
inside a defined neighborhood around the keypoint. The intensity values
of the two pixel points are then compared, and if the first point has a
higher intensity, then the value 1 is assigned to the corresponding
descriptor bit value. Otherwise, the value 0 is assigned. Repeating this
test on a number of random pairs generates a descriptor that is made up
of several bits; typically, 128 to 512 bits (pairwise tests) are used.

This is the scheme used by ORB. Then, the decision to be made is which
set of point pairs should be used to build the descriptor. Indeed, even if
the point pairs are randomly chosen, once they have been selected, the
same set of binary tests must be performed to build the descriptor of all
the keypoints in order to ensure consistency of the results. To make the
descriptor more distinctive, intuition tells us that some choices must be
better than others. Also, the fact that the orientation of each keypoint is
known introduces some bias in the intensity pattern distribution when
this one is normalized with respect to this orientation (that is, when the
point coordinates are given relative to this keypoint orientation). From
these considerations and the experimental validation, ORB has
identified a set of 256 point pairs with high variance and minimal
pairwise correlation. In other words, the selected binary tests are the
ones that have an equal chance of being 0 or 1 over a variety of
keypoints and also those that are as independent from each other as
possible.



The descriptor of BRISK is very similar. It is also based on pairwise
intensity comparisons with two differences. First, instead of randomly
selecting the points from the 31x31 points of the neighborhood, the
chosen points are selected from a sampling pattern of a set of concentric
circles (made up of 60 points) with locations that are equally spaced.
Second, the intensity at each of these sample points is a Gaussian-
smoothed value with a σ value proportional to the distance from the
central keypoint. From these points, BRISK selects 512 point pairs.

There's more...
Several other binary descriptors exist, and interested readers should take
a look at the scientific literature to learn more on this subject. Since it is
also available in the OpenCV contrib module, we will describe one
additional descriptor here.

FREAK

FREAK stands for Fast Retina Keypoint. This is also a binary
descriptor, but it does not have an associated detector. It can be applied
on any set of keypoints detected, for example, SIFT, SURF, or ORB.

Like BRISK, the FREAK descriptor is also based on a sampling pattern
defined on concentric circles. However, to design their descriptor, the
authors used an analogy of the human eye. They observed that on the
retina, the density of the ganglion cells decreases as the distance to the
fovea increase. Consequently, they built a sampling pattern made of 43
points in which the density of a point is much greater near the central
point. To obtain its intensity, each point is filtered with a Gaussian kernel
that has a size that also increases with the distance to the center.

In order to identify the pairwise comparisons that should be performed,
an experimental validation has been performed by following a strategy
similar to the one used for ORB. By analyzing several thousands of
keypoints, the binary tests with the highest variance and lowest
correlation are retained, resulting in 512 pairs.



FREAK also introduced the idea of performing the descriptor
comparisons in cascade. That is, the first 128 bits representing coarser
information (corresponding to the tests performed at the periphery on
larger Gaussian kernels) are performed first. Only if the compared
descriptors pass this initial step will the remaining tests be performed.

Using the keypoints detected with ORB, we extract the FREAK
descriptors by simply creating the cv::DescriptorExtractor instance,
as follows:

    // to describe with FREAK  
    feature = cv::xfeatures2d::FREAK::create(); 

The match result is as follows:

The following figure illustrates the sampling pattern used for the three



descriptors presented in this recipe:

The first square is the ORB/BRIEF descriptor in which point pairs are
randomly selected on a square grid. Each pair of points linked by a line
represents a possible test to compare the two pixel intensities. Here, we
show only eight such pairs; the default ORB uses 256 pairs. The middle
square corresponds to the BRISK sampling pattern. Points are uniformly
sampled on the circles shown (for clarity, we only identify the points on
the first circle here). Finally, the third square shows the log-polar
sampling grid of FREAK. While BRISK has a uniform distribution of
points, FREAK has a higher density of points closer to the center. For
example, in BRISK, you find 20 points on the outer circle, while in the
case of FREAK, its outer circle includes only six points.

See also
The Detecting FAST features at multiple scales recipe in Chapter 8 ,
Detecting Interest Points, presents the associated BRISK and ORB
feature detectors and provides more references on the subject
The BRIEF: Computing a Local Binary Descriptor Very Fast
article by E. M. Calonder, V. Lepetit, M. Ozuysal, T. Trzcinski, C.
Strecha, and P. Fua in IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2012, describes the BRIEF feature descriptor
that inspires the presented binary descriptors
The FREAK: Fast Retina Keypoint article by A. Alahi, R. Ortiz, and
P. Vandergheynst in IEEE Conference on Computer Vision and



Pattern Recognition, 2012, describes the FREAK feature descriptor



Chapter 10. Estimating Projective
Relations in Images
In this chapter, we will cover the following recipes:

Computing the fundamental matrix of an image pair
Matching images using random sample consensus
Computing a homography between two images
Detecting a planar target in images

Introduction
Images are generally produced using a digital camera, which captures a
scene by projecting light going through its lens onto an image sensor.
The fact that an image is formed by the projection of a 3D scene onto a
2D plane implies the existence of important relationships both between a
scene and its image and between different images of the same scene.
Projective geometry is the tool that is used to describe and characterize,
in mathematical terms, the process of image formation. In this chapter,
we will introduce you to some of the fundamental projective relations
that exist in multi-view imagery and explain how these can be used in
computer vision programming. But, before we start the recipes, let's
explore the basic concepts related to scene projection and image
formation.

Image formation
Fundamentally, the process used to produce images has not changed
since the beginning of photography. The light coming from an observed
scene is captured by a camera through a frontal aperture, and the
captured light rays hit an image plane (or an image sensor) located at the
back of the camera. Additionally, a lens is used to concentrate the rays
coming from the different scene elements. This process is illustrated by
the following figure:



Here, do is the distance from the lens to the observed object, di is the
distance from the lens to the image plane, and f is the focal length of the
lens. These quantities are related by the so-called thin lens equation:

In computer vision, this camera model can be simplified in a number of
ways. Firstly, we can neglect the effect of the lens by considering that
we have a camera with an infinitesimal aperture since, in theory, this
does not change the image appearance. (However, by doing so, we
ignore the focusing effect by creating an image with an infinite depth of
field.) In this case, therefore, only the central ray is considered.
Secondly, since most of the time we have do>>di, we can assume that



the image plane is located at the focal distance. Finally, we can note
from the geometry of the system that the image on the plane is inverted.
We can obtain an identical but upright image by simply positioning the
image plane in front of the lens. Obviously, this is not physically
feasible, but from a mathematical point of view, this is completely
equivalent. This simplified model is often referred to as the pinhole
camera  model, and it is represented as follows:

From this model, and using the law of similar triangles, we can easily
derive the basic projective equation that relates a photographed object
with its image:



The size (hi) of the image of an object (of physical height ho) is
therefore inversely proportional to its distance (do) from the camera,
which is naturally true. In general, this relation describes where a 3D
scene point will be projected on the image plane given the geometry of
the camera. More specifically, if we assume that the reference frame is
positioned at the focal point, then a 3D scene point located at position
(X,Y,Z) will be projected onto the image plane at (x,y)=(fX/Z,fY/Z).
Here, the Z coordinate corresponds with the depth of the point (or
distance to camera, denoted by do in the previous equation). This
relation can be rewritten in a simple matrix form through the
introduction of homogeneous coordinates, in which 2D points are
represented by 3-vectors, and 3D points are represented by 4-vectors
(the extra coordinate is simply an arbitrary scale factor s that needs to
be removed when a 2D coordinate needs to be extracted from a
homogeneous 3-vector):

This 3x4 matrix is called the projection matrix. In cases where the
reference frame is not aligned with the focal point, then rotation r and
translation t matrices must be introduced. The role of these ones is
simply to express the projected 3D point into a camera-centric reference
frame, which is as follows:



The first matrix of this equation is said to contain the intrinsic
parameters of the camera (here, only the focal length, but the next
chapter will introduce a few more intrinsic parameters). The second
matrix contains the extrinsic parameters that are the parameters that
relate the camera to the exterior world. It should be noted that, in
practice, image coordinates are expressed in pixels while 3D coordinates
are expressed in world measurements (for example, meters). This aspect
will be explored in Chapter 11 , Reconstructing 3D Scenes.



Computing the fundamental
matrix of an image pair
The introductory section of this chapter presented the projective
equation, describing how a scene point projects onto the image plane of
a single camera. In this recipe, we will explore the projective
relationship that exists between two images that display the same scene.
These two images could have been obtained by moving a camera to two
different locations to take pictures from two viewpoints, or by using two
cameras, each of them taking a different picture of the scene. When
those two cameras are separated by a rigid baseline, we use the term
stereovision.

Getting ready
Let's now consider two pinhole cameras observing a given scene point,
as shown in the following figure:



We learned that we can find the image x of a 3D point X by tracing a line
joining this 3D point with the camera's center. Conversely, the scene
point that has its image at position x on the image plane can be located
anywhere on this line in the 3D space. This implies that, if we want to
find the corresponding point of a given image point in another image, we
need to search along the projection of this line onto the second image
plane. This imaginary line is called the epipolar line of point x. It
defines a fundamental constraint that must satisfy two corresponding
points; that is, the match of a given point must lie on the epipolar line of
this point in the other view, and the exact orientation of this epipolar line
depends on the respective position of the two cameras. In fact, the
configuration of the set of possible epipolar lines characterizes the
geometry of a two-view system.

Another observation that can be made from the geometry of this two-
view system is that all the epipolar lines pass through the same point.
This point corresponds to the projection of one camera's center onto the
other camera (points e and e' in the above figure). This special point is
called an epipole.

Mathematically, the relationship between an image point and its
corresponding epipolar line can be expressed using a 3x3 matrix, as
follows:



In projective geometry, a 2D line is also represented by a 3-vector. It
corresponds to the set of 2D points (x',y'), that satisfy the equation
l1'x'+ l2'y'+ l3'= 0 (the prime superscript denotes that this line
belongs to the second image). Consequently, the matrix F, called the
fundamental matrix, maps a 2D image point in one view to an epipolar
line in the other view.

How to do it...
The fundamental matrix of an image pair can be estimated by solving a
set of equations that involve a certain number of known matched points
between the two images. The minimum number of such matches is
seven. In order to illustrate the fundamental matrix estimation process,
we selected seven good matches from the matching results of SIFT
features, as presented in the previous chapter.

These matches will be used to compute the fundamental matrix using the
cv::findFundamentalMat OpenCV function. The image pair with its
selected matches is shown here:



These matches are stored in a cv::DMatch vector pointing to indexes of
cv::keypoint instances. These keypoints first need to be converted into
cv::Point2f in order to be used with cv::findFundamentalMat. An
OpenCV function can be used to this end:

    // Convert keypoints into Point2f 
    std::vector<cv::Point2f> selPoints1, selPoints2; 
    std::vector<int> pointIndexes1, pointIndexes2; 
    cv::KeyPoint::convert(keypoints1,selPoints1,pointIndexes1);  
    cv::KeyPoint::convert(keypoints2,selPoints2,pointIndexes2);  

The two resulting vectors selPoints1 and selPoints2 contain the
corresponding point coordinates in the two images. The pointIndexes1
and pointIndexes2 vectors contain the indexes of the keypoints to be
converted. The call to the cv::findFundamentalMat function is then as
follows:



    // Compute F matrix from 7 matches 
    cv::Mat fundamental= cv::findFundamentalMat(  
                             selPoints1,      // 7 points in 
first image 
                             selPoints2,      // 7 points in 
second image 
                             cv::FM_7POINT);  // 7-point method  

One way to visually verify the validity of the fundamental matrix is to
draw the epipolar lines of some selected points. Another OpenCV
function allows the epipolar lines of a given set of points to be
computed. Once these have been computed, they can be drawn using
the cv::line function. The following lines of code accomplish these two
steps (that is, computing and drawing epipolar lines on the image on the
right from the points in the image on the left):

    // draw the left points corresponding epipolar 
    // lines in right image  
    std::vector<cv::Vec3f> lines1; 
    cv::computeCorrespondEpilines(  
                     selPoints1,  // image points  
                     1,           // in image 1 (can also be 2)  
                     fundamental, // F matrix 
                     lines1);     // vector of epipolar lines 
    // for all epipolar lines 
    for (vector<cv::Vec3f>::const_iterator it= lines1.begin(); 
                it!=lines1.end(); ++it) { 
      // draw the line between first and last column 
      cv::line(image2, cv::Point(0,-(*it)[2]/(*it)[1]),
               cv::Point(image2.cols,
                         -((*it)[2]+(*it)[0]*image2.cols)/(*it)
[1]), 
                         cv::Scalar(255,255,255)); 
    } 

The epipolar lines of the left image are obtained in a similar way. The
following image shows these lines:



Remember that the epipole of one image is at the intersection of all its
epipolar lines. This one is the projection of the other camera's center.
Note that the epipolar lines can intersect (and often do) outside of the
image boundaries. In the case of our example, the epipole of the second
image is at the location where the first camera would be visible if the
two images were taken at the same instant. Note also that the results can
be quite unstable when the fundamental matrix is computed from only
seven matches. Indeed, substituting one match for another could lead to
a significantly different set of epipolar lines.

How it works...
We previously explained that, for a point in one image, the fundamental
matrix gives the equation of the line on which its corresponding point in
the other view should be found. If the corresponding point of a point



(x,y) is (x',y'), suppose we have F, the fundamental matrix, between
the two views. Since (x',y') lies on the epipolar line given by
multiplying F by (x,y) expressed in homogenous coordinates, we must
then have the following equation:

This equation expresses the relationship between two corresponding
points and is known as the epipolar constraint. Using this equation, it
becomes possible to estimate the entries of the matrix using known
matches. Since the entries of the F matrix are given up to a scale factor,
there are only eight entries to be estimated (the ninth one can be
arbitrarily set to 1). Each match contributes to one equation. Therefore,
with eight known matches, the matrix can be fully estimated by solving
the resulting set of linear equations. This is what is done when you use
the cv::FM_8POINT flag with the cv::findFundamentalMat function. Note
that, in this case, it is possible (and preferable) to input more than eight
matches. The obtained over-determined system of linear equations can
then be solved in a mean-square sense.

To estimate the fundamental matrix, an additional constraint can also be
exploited. Mathematically, the F matrix maps a 2D point to a 1D pencil
of lines (that is, lines that intersect at a common point). The fact that all
these epipolar lines pass through this unique point (that is, the epipole)



imposes a constraint on the matrix. This constraint reduces the number
of matches required to estimate the fundamental matrix to seven. In
mathematical terms, we say that the fundamental matrix has 7 degrees
of freedom and is therefore of rank-2. Unfortunately, in this case, the set
of equations becomes nonlinear, with up to three possible solutions (in
this case, cv::findFundamentalMat will return a fundamental matrix of
the size 9x3, that is, three 3x3 matrices stacked up). The seven-match
solution of the F matrix estimation can be invoked in OpenCV by using
the cv::FM_7POINT flag. This is what we did in the example in the
preceding section.

Lastly, it should be mentioned that the choice of an appropriate set of
matches in the image is important to obtain an accurate estimation of the
fundamental matrix. In general, the matches should be well distributed
across the images and include points at different depths in the scene.
Otherwise, the solution will become unstable. In particular, the selected
scene points should not be coplanar, as the fundamental matrix (in this
case) becomes degenerated.

See also
Multiple View Geometry in Computer Vision, Cambridge University
Press, 2004, R. Hartley and A. Zisserman, is the most complete
reference on projective geometry in computer vision
The Matching images using random sample consensus recipe
explains how a fundamental matrix can be robustly estimated from a
larger match set
The Computing a homography between two images recipe explains
why a fundamental matrix cannot be computed when the matched
points are coplanar, or are the result of a pure rotation



Matching images using random
sample consensus
When two cameras observe the same scene, they see the same elements
but under different viewpoints. We have already studied the feature
point matching problem in the previous chapter. In this recipe, we come
back to this problem, and we will learn how to exploit the epipolar
constraint introduced in the previous recipe to match image features
more reliably.

The principle that we will follow is simple: when we match feature
points between two images, we only accept those matches that fall on
corresponding epipolar lines. However, to be able to check this
condition, the fundamental matrix must be known, but we need good
matches to estimate this matrix. This seems to be a chicken-and-egg
problem. However, in this recipe, we propose a solution in which the
fundamental matrix and a set of good matches will be jointly computed.

How to do it...
The objective is to be able to compute a fundamental matrix and a set of
good matches between two views. To do so, all the found feature point
correspondences will be validated using the epipolar constraint
introduced in the previous recipe. To this end, we have created a class
that encapsulates the different steps of the proposed robust matching
process:

    class RobustMatcher { 
     private: 
      // pointer to the feature point detector object 
      cv::Ptr<cv::FeatureDetector> detector; 
      // pointer to the feature descriptor extractor object 
      cv::Ptr<cv::DescriptorExtractor> descriptor; 
      int normType; 
      float ratio;         // max ratio between 1st and 2nd NN 
      bool refineF;        // if true will refine the F matrix 
      bool refineM;        // if true will refine the matches  



      double distance;     // min distance to epipolar 
      double confidence;   // confidence level (probability) 
 
     public: 
 
      RobustMatcher(const cv::Ptr<cv::FeatureDetector> 
&detector,         
                    const cv::Ptr<cv::DescriptorExtractor> 
&descriptor=  
                              cv::Ptr<cv::DescriptorExtractor>
()):
                    detector(detector), descriptor(descriptor),                 
                    normType(cv::NORM_L2), ratio(0.8f),  
                    refineF(true), refineM(true),  
                    confidence(0.98), distance(1.0) { 
 
          // in this case use the associated descriptor 
          if (!this->descriptor) {  
            this->descriptor = this->detector; 
        }  
      } 

Users of this class simply supply the feature detector and descriptor
instances of their choice. These ones can also be specified using the
defined setFeatureDetector and setDescriptorExtractor setter
methods.

The main method is the match method, which returns matches, detected
keypoints, and the estimated fundamental matrix. The method proceeds
in four distinct steps (explicitly identified in the comments of the
following code), which we will now explore:

    // Match feature points using RANSAC 
    // returns fundamental matrix and output match set 
    cv::Mat match(cv::Mat& image1, cv::Mat& image2,     // 
input images 
                  std::vector<cv::DMatch>& matches,     // 
output matches 
                  std::vector<cv::KeyPoint>& 
keypoints1,//output keypoints 
                  std::vector<cv::KeyPoint>& keypoints2) {  
 
       // 1. Detection of the feature points 
      detector->detect(image1,keypoints1); 



      detector->detect(image2,keypoints2); 
 
      // 2. Extraction of the feature descriptors 
      cv::Mat descriptors1, descriptors2; 
      descriptor->compute(image1,keypoints1,descriptors1); 
      descriptor->compute(image2,keypoints2,descriptors2); 
 
      // 3. Match the two image descriptors 
      // (optionally apply some checking method) 
    
      // Construction of the matcher with crosscheck 
      cv::BFMatcher matcher(normType,   //distance measure 
                            true);      //crosscheck flag 
      // match descriptors 
      std::vector<cv::DMatch> outputMatches; 
      matcher.match(descriptors1,descriptors2,outputMatches); 
 
      // 4. Validate matches using RANSAC 
      cv::Mat fundamental= ransacTest(outputMatches,        
                                      keypoints1, keypoints2,    
                                      matches); 
      // return the found fundamental matrix 
      return fundamental; 
    } 

The first two steps simply detect the feature points and compute their
descriptors. Next, we proceed to feature matching using the
cv::BFMatcher class, as we did in the previous chapter. We use the
crosscheck flag to obtain matches of better quality.

The fourth step is the new concept introduced in this recipe. It consists
of an additional filtering test that will this time use the fundamental
matrix in order to reject matches that do not obey the epipolar
constraint. This test is based on the RANSAC method that can compute the
fundamental matrix even when outliers are present in the match set (this
method will be explained in the next section).

Using our RobustMatcher class, the robust matching of an image pair is
then easily accomplished by the following calls:

    // Prepare the matcher (with default parameters) 
    // SIFT detector and descriptor 
    RobustMatcher rmatcher(cv::xfeatures2d::SIFT::create(250));  



 
    // Match the two images 
    std::vector<cv::DMatch> matches; 
 
    std::vector<cv::KeyPoint> keypoints1, keypoints2; 
    cv::Mat fundamental = rmatcher.match(image1, image2,    
                                         matches,         
                                         keypoints1, 
keypoints2); 

This results in 54 matches that are shown in the following screenshot:

Most of the time, the resulting matches will be good matches. However,
a few false matches might remain; these are ones that accidently fell on
the corresponding epipolar lines of the computed fundamental matrix.

How it works...



In the preceding recipe, we learned that it is possible to estimate the
fundamental matrix associated with an image pair from a number of
feature point matches. Obviously, to be exact, this match set must be
made up of only good matches. However, in a real context, it is not
possible to guarantee that a match set obtained by comparing the
descriptors of the detected feature points will be completely exact. This
is why a fundamental matrix estimation method based on the RANSAC
(RANdom SAmpling Consensus) strategy has been introduced.

The RANSAC algorithm aims to estimate a given mathematical entity
from a data set that may contain a number of outliers. The idea is to
randomly select some data points from the set and perform the
estimation with only those. The number of selected points should be the
minimum number of points required to estimate the mathematical entity.
In the case of the fundamental matrix, eight matched pairs is the
minimum number (in fact, the real minimum is seven matches, but the 8-
point linear algorithm is faster to compute). Once the fundamental
matrix is estimated from these eight random matches, all the other
matches in the match set are tested against the epipolar constraint that
derives from this matrix. All the matches that fulfill this constraint (that
is, matches for which the corresponding feature is at a short distance
from its epipolar line) are identified. These matches form the support set
of the computed fundamental matrix.

The central idea behind the RANSAC algorithm is that, the larger the
support set, the higher the probability that the computed matrix is the
right one. Conversely, if one (or more) of the randomly selected matches
is an incorrect match, then the computed fundamental matrix will also
be incorrect, and its support set will be expected to be small. This
process is repeated a number of times and, in the end, the matrix with
the largest support will be retained as the most probable one.

Therefore, our objective is to pick eight random matches several times
so that eventually we select eight good ones, which should give us a
large support set. Depending on the proportion of incorrect matches in
the entire data set, the probability of selecting a set of eight correct
matches will differ. However, we know that, the more selections we



make, the higher our confidence will be that we have at least one good
match set among those selections. More precisely, if we assume that the
match set is made of w% inliers (good matches), then the probability that
we select eight good matches is w8. Consequently, the probability that a
selection contains at least one incorrect match is (1-w8). If we make k
selections, the probability of having one random set that contains good
matches only is 1-(1-w8)k.

This is the confidence probability c, and we want this probability to be
as high as possible, since we need at least one good set of matches in
order to obtain the correct fundamental matrix. Therefore, when running
the RANSAC algorithm, one needs to determine the number of k
selections that need to be made in order to obtain a given confidence
level.

The use of the RANSAC method to estimate the fundamental matrix is
done inside the ransacTest method of our RobustMatcher class:

    // Identify good matches using RANSAC 
    // Return fundamental matrix and output matches 
    cv::Mat ransacTest(const std::vector<cv::DMatch>& matches,
                       std::vector<cv::KeyPoint>& keypoints1,  
                       std::vector<cv::KeyPoint>& keypoints2,  
                       std::vector<cv::DMatch>& outMatches) { 
 
      // Convert keypoints into Point2f 
      std::vector<cv::Point2f> points1, points2; 
      for (std::vector<cv::DMatch>::const_iterator it= 
matches.begin(); 
           it!= matches.end(); ++it) { 
 
        // Get the position of left keypoints 
        points1.push_back(keypoints1[it->queryIdx].pt); 
        // Get the position of right keypoints 
        points2.push_back(keypoints2[it->trainIdx].pt); 
      } 
 
      // Compute F matrix using RANSAC 
      std::vector<uchar> inliers(points1.size(),0); 
      cv::Mat fundamental=  
         cv::findFundamentalMat( points1,
                         points2,       // matching points 



                         inliers,       // match status (inlier 
or outlier)   
                         cv::FM_RANSAC, // RANSAC method 
                         distance,      // distance to epipolar 
line 
                         confidence);   // confidence 
probability 
      
      // extract the surviving (inliers) matches 
      std::vector<uchar>::const_iterator itIn= inliers.begin();  
      std::vector<cv::DMatch>::const_iterator itM= 
matches.begin(); 
      // for all matches 
      for ( ;itIn!= inliers.end(); ++itIn, ++itM) { 
        if (*itIn) { // it is a valid match 
        outMatches.push_back(*itM); 
      } 
    } 
    return fundamental; 
   } 

This code is a bit long because the keypoints need to be converted into
cv::Point2f before the F matrix computation. When using the
cv::findFundamentalMat function with the cv::FM_RANSAC method, two
extra parameters are provided. One of these extra parameters is the
confidence level, which determines the number of iterations to be made
(by default, it is 0.99). The other parameter is the maximum distance to
the epipolar line for a point to be considered as an inlier. All of the
matched pairs in which a point is at a greater distance from its epipolar
line than the distance specified will be reported as an outlier. The
function also returns std::vector of the character value, indicating that
the corresponding match in the input set has been identified either as an
outlier (0) or as an inlier (1). This explains the last loop of our method
that extracts the good matches from the original match set.

The more good matches you have in your initial match set, the higher
the probability that RANSAC will give you the correct fundamental
matrix. This is why we applied the crosscheck filter when matching the
feature points. You could have also used the ratio test presented in the
previous recipe in order to further improve the quality of the final match
set. It is just a question of balancing the computational complexity, the



final number of matches, and the required level of confidence that the
obtained match set will contain only exact matches.

There's more...
The result of the robust matching process presented in this recipe is: 1)
an estimate of the fundamental matrix computed using the eight selected
matches that have the largest support and 2) the match set included in
this support set. Using this information, it is possible to refine these
results in two ways.

Refining the fundamental matrix

Since we now have a match set of good quality, as a last step, it might be
a good idea to use all of them to re-estimate the fundamental matrix. We
already mentioned that a linear 8-point algorithm to estimate this matrix
exists. We can, therefore, obtain an over-determined system of
equations that will solve the fundamental matrix in a least-squares sense.
This step can be added the end of our ransacTest function:

    // Convert the keypoints in support set into Point2f  
    points1.clear(); 
    points2.clear(); 
    for (std::vector<cv::DMatch>::const_iterator it=  
                                      outMatches.begin(); 
         it!= outMatches.end(); ++it) { 
      // Get the position of left keypoints 
      points1.push_back(keypoints1[it->queryIdx].pt); 
      // Get the position of right keypoints 
      points2.push_back(keypoints2[it->trainIdx].pt); 
    } 
 
    // Compute 8-point F from all accepted matches 
    fundamental= cv::findFundamentalMat(  
                      points1,points2, // matching points 
                      cv::FM_8POINT);  // 8-point method solved 
using SVD 

The cv::findFundamentalMat function does indeed accept more than 8
matches by solving the linear system of equations using singular value
decomposition.



Refining the matches

We learned that in a two-view system, every point must lie on the
epipolar line of its corresponding point. This is the epipolar constraint
expressed by the fundamental matrix. Consequently, if you have a good
estimate of a fundamental matrix, you can use this epipolar constraint to
correct the obtained matches by forcing them to lie on their epipolar
lines. This can be easily done by using the cv::correctMatches OpenCV
function:

    std::vector<cv::Point2f> newPoints1, newPoints2; 
    // refine the matches 
    correctMatches(fundamental,             // F matrix 
                   points1, points2,        // original 
position 
                   newPoints1, newPoints2); // new position 

This function proceeds by modifying the position of each corresponding
point so that it satisfies the epipolar constraint while minimizing the
cumulative (squared) displacement.



Computing a homography
between two images
The first recipe of this chapter showed you how to compute the
fundamental matrix of an image pair from a set of matches. In projective
geometry, another very useful mathematical entity also exists. This one
can be computed from multi-view imagery and, as we will see, is a
matrix with special properties.

Getting ready
Again, let's consider the projective relation between a 3D point and its
image on a camera, which we presented in the introduction section of
this chapter. Basically, we learned that this equation relates a 3D point
to its image using the intrinsic properties of the camera and the position
of that camera (specified with a rotation and a translation component).
If we now carefully examine this equation, we realize that there are two
special situations of particular interest. The first situation is when two
views of a scene are separated by a pure rotation. We can then observe
that the fourth column of the extrinsic matrix will be made up of 0s (that
is, the translation is null):

As a result, the projective relation in this special case becomes a 3x3



matrix. A similarly interesting situation also occurs when the object we
observe is a plane. In this specific case, we can assume without loss of
generality that the points on this plane will be located at Z=0. As a result,
we obtain the following equation:

This zero coordinate of the scene points will then cancel the third
column of the projective matrix, which will then again become a 3x3
matrix. This special matrix is called a homography, and it implies that,
under special circumstances (here, a pure rotation or a planar object), a
world point can be related to its image by a linear relation. In addition,
because this matrix is invertible, you can also relate an image point on
one view directly to its corresponding point on the other view, given that
these two views are separated by a pure rotation, or are imaging a planar
object. The homographic relation is then of the following form:



Here, H is a 3x3 matrix. This relation holds up to a scale factor
represented here by the s scalar value. Once this matrix is estimated, all
the points in one view can be transferred to a second view using this
relation. This is the property that will be exploited in this recipe and the
next one. Note that, as a side effect of the homography relation, the
fundamental matrix becomes undefined in these cases.

How to do it...
Suppose that we have two images separated by a pure rotation. This
happens, for example, when you take pictures of a building or a
landscape by rotating yourself; as you are sufficiently far away from
your subject, the translational component is, in this case, negligible.
These two images can be matched using the features of your choice and
the cv::BFMatcher function.

The result is something like this:

Then, as we did in the previous recipe, we will apply a RANSAC step
that will this time involve the estimation of a homography based on a
match set (which obviously contains a good number of outliers). This is



done by using the cv::findHomography function, which is very similar to
the cv::findFundamentalMat function:

    // Find the homography between image 1 and image 2 
    std::vector<char> inliers; 
    cv::Mat homography= cv::findHomography(       
                            points1,
                            points2,    // corresponding points  
                            inliers,    // outputed inliers 
matches  
                            cv::RANSAC, // RANSAC method 
                            1.);     //max distance to 
reprojection point 

Recall that a homography exists (instead of a fundamental matrix)
because our two images are separated by a pure rotation. We display
here the inlier keypoints as identified by the inliers argument of the
function:

The homography is a 3x3 invertible matrix. Therefore, once it has been
computed, you can transfer image points from one image to the other. In
fact, you can do this for every pixel of an image. Consequently, you can
transfer a complete image to the point of view of a second image. This
process is called image mosaicing or image stitching and is often used
to build a large panorama from multiple images. An OpenCV function



that does exactly this is as follows:

    // Warp image 1 to image 2 
    cv::Mat result; 
    cv::warpPerspective(image1,       // input image 
                        result,       // output image 
                        homography,   // homography 
                        cv::Size(2*image1.cols,image1.rows));  
                        // size of output image 

Once this new image is obtained, it can be appended to the other image
in order to expand the view (since the two images are now from the
same point of view):

    // Copy image 1 on the first half of full image 
    cv::Mat half(result,cv::Rect(0,0,image2.cols,image2.rows));  
    image2.copyTo(half);    // copy image2 to image1 roi 

The following image is the result:

How it works...
When two views are related by a homography, it becomes possible to
determine where a given scene point on one image is found on the other
image. This property becomes particularly interesting for the points in



one image that fall outside the image boundaries of the other. Indeed,
since the second view shows a portion of the scene that is not visible in
the first image, you can use the homography in order to expand the
image by reading the color value of the additional pixels in the other
image. That's how we were able to create a new image that is an
expansion of our second image in which extra columns were added to
the right-hand side.

The homography computed by cv::findHomography is the one that maps
the points in the first image to the points in the second image. This
homography can be computed from a minimum of four matches and the
RANSAC algorithm is again used here. Once the homography with the
best support is found, the cv::findHomography method refines it using
all the identified inliers.

Now, in order to transfer the points of image 1 to image 2, what we need
is, in fact, the inverse homography. This is exactly what the
cv::warpPerspective function is doing by default; that is, it uses the
inverse of the homography provided as the input to get the color value
of each point of the output image (this is what we called backward
mapping in Chapter 2 , Manipulating Pixels). When an output pixel is
transferred to a point outside the input image, a black value (0) is simply
assigned to this pixel. Note that a cv::WARP_INVERSE_MAP flag can be
specified as the optional fifth argument in cv::warpPerspective if you
want to use direct homography instead of the inverted one during the
pixel transfer process.

There's more...
The contrib package of OpenCV offers a complete stitching solution
that can produce high-quality panoramas from multiple images.

Generating image panoramas with the cv::Stitcher module

The mosaic we obtained in this recipe is good but still contains some
defects. The alignment of the images is not perfect and we can clearly
see the cut between the two images because the brightness and contrast



in the two images are not the same. Fortunately, there is now a stitching
solution in OpenCV that looks at all these aspects and tries to produce a
panorama of optimal quality. This solution is quite complex and
elaborated but, at its core, it relies on the principles learned in this
recipe. That is, matching feature points in images and robustly
estimating a homography. In addition, the solution estimates the intrinsic
and extrinsic camera parameters to ensure a better alignment. It also
nicely blends the images together by compensating for the difference in
exposure conditions. The high-level call of this function is as follows:

    // Read input images 
    std::vector<cv::Mat> images; 
    images.push_back(cv::imread("parliament1.jpg")); 
    images.push_back(cv::imread("parliament2.jpg")); 
 
    cv::Mat panorama;   // output panorama 
    // create the stitcher 
    cv::Stitcher stitcher = cv::Stitcher::createDefault(); 
    // stitch the images 
    cv::Stitcher::Status status = stitcher.stitch(images, 
panorama); 
 

Numerous parameters in the instance can be adjusted to obtain high-
quality results. Interested readers should explore this package in more
depth in order to learn more about it. In our case, the result obtained is
as follows:



Obviously, in general, an arbitrary number of input images can be used
to compose a large panorama.

See also
The Remapping an image recipe in Chapter 2 , Manipulating
Pixels, discusses the concept of backward mapping
The Automatic panoramic image stitching using invariant features
article by M. Brown and D. Lowe in International Journal of
Computer Vision,74, 1, 2007, describes a complete method for
building panoramas from multiple images



Detecting a planar target in
images
In the previous recipe, we explained how homographies can be used to
stitch together images separated by a pure rotation to create a panorama.
In this recipe, we also learned that different images of a plane also
generate homographies between views. We will now see how we can
make use of this fact to recognize a planar object in an image.

How to do it...
Suppose you want to detect the occurrence of a planar object in an
image. This object could be a poster, painting, logo, signage, and so on.
Based on what we have learned in this chapter, the strategy would
consist of detecting feature points on this planar object and to try to
match them with the feature points in the image. These matches would
then be validated using a robust matching scheme similar to the one we
used previously, but this time based on a homography. If the number of
valid matches is high, then this must mean that our planar object is
visible in the current image.

In this recipe, our mission is to detect the occurrence of the first edition
of our book in an image, more specifically, the following image:



Let's define a TargetMatcher class that is very similar to our
RobustMatcher class:

    class TargetMatcher { 
      private: 
      // pointer to the feature point detector object 
      cv::Ptr<cv::FeatureDetector> detector; 
      // pointer to the feature descriptor extractor object 
      cv::Ptr<cv::DescriptorExtractor> descriptor; 
      cv::Mat target;           // target image 
      int normType;             // to compare descriptor 
vectors 
      double distance;          // min reprojection error 
      int numberOfLevels;       // pyramid size 
      double scaleFactor;       // scale between levels 
      // the pyramid of target images and its keypoints 
      std::vector<cv::Mat> pyramid; 
      std::vector<std::vector<cv::KeyPoint>> pyrKeypoints; 
      std::vector<cv::Mat> pyrDescriptors; 

The reference image of the planar object to be matched is held by the
target attribute. As it will be explained in the next section, feature
points will be detected in a pyramid of images of the target successively
down-sampled. The matching methods are similar to the ones of the
RobustMatcher class, except that they include cv::findHomography
instead of cv::findFundamentalMat in the ransacTest method.

To use the TargetMatcher class, a specific feature point detector and
descriptor must be instantiated and passed to the constructor:

    // Prepare the matcher 
    TargetMatcher tmatcher(cv::FastFeatureDetector::create(10),  
                           cv::BRISK::create()); 
    tmatcher.setNormType(cv::NORM_HAMMING); 

Here, we selected the FAST detector in conjunction with the BRISK
descriptor because they are quick to compute. Then, you must specify
the target to be detected:

    // set the target image 
    tmatcher.setTarget(target); 



In our case, this is the following image:

You can detect this target in an image by calling the detectTarget
method:

    // match image with target 
    tmatcher.detectTarget(image, corners); 

This method returns the position of the four corners of the target in the
image (if found). Lines can then be drawn to visually validate the
detection:

   // draw the target corners on the image 
    if (corners.size() == 4) { // we have a detection 
 
      cv::line(image, cv::Point(corners[0]),  
               cv::Point(corners[1]),
               cv::Scalar(255, 255, 255), 3); 
      cv::line(image, cv::Point(corners[1]),  
               cv::Point(corners[2]), 
               cv::Scalar(255, 255, 255), 3); 
      cv::line(image, cv::Point(corners[2]),  
               cv::Point(corners[3]),
               cv::Scalar(255, 255, 255), 3); 
      cv::line(image, cv::Point(corners[3]),  
               cv::Point(corners[0]),
               cv::Scalar(255, 255, 255), 3); 
    } 

The result is as follows:



How it works...
Since we do not know what the size of the target in the image is, we
have decided to build a pyramid made of the target image in different
sizes. Another option would have been to use scale-invariant features.
At each level of our pyramid, the size of the target image is reduced by a
certain factor (attribute scaleFactor, 0.9 by default) and the pyramid is
made of a number of levels (attribute numberOfLevels, 8 by default).
Feature points are detected for each level of the pyramid:

    // Set the target image 
    void setTarget(const cv::Mat t) { 
 
      target= t; 
      createPyramid(); 
    } 
    // create a pyramid of target images 



    void createPyramid() { 
 
      // create the pyramid of target images 
      pyramid.clear(); 
      cv::Mat layer(target); 
      for (int i = 0;  
           i < numberOfLevels; i++) { // reduce size at each 
layer 
        pyramid.push_back(target.clone()); 
        resize(target, target, cv::Size(), scaleFactor, 
scaleFactor); 
      } 
 
      pyrKeypoints.clear(); 
      pyrDescriptors.clear(); 
      // keypoint detection and description in pyramid 
      for (int i = 0; i < numberOfLevels; i++) { 
        // detect target keypoints at level i 
        pyrKeypoints.push_back(std::vector<cv::KeyPoint>()); 
        detector->detect(pyramid[i], pyrKeypoints[i]); 
        // compute descriptor at level i 
        pyrDescriptors.push_back(cv::Mat()); 
        descriptor->compute(pyramid[i],  
                            pyrKeypoints[i],
                            pyrDescriptors[i]); 
      } 
    } 

The detectTarget method then proceeds onto three steps. Firstly,
interest points are detected in the input image. Secondly, this image is
robustly matched with each image of the target pyramid. The level with
the highest number of inliers is retained. If this one has a sufficiently
high number of surviving matches, then we have found the target. The
third step consists of reprojecting the four corners of the target to the
correct scale onto the input image using the found homography and the
cv::getPerspectiveTransform function:

    // detect the defined planar target in an image 
    // returns the homography and 
    // the 4 corners of the detected target 
    cv::Mat detectTarget( 
                  const cv::Mat& image, // position of the 
                                        // target corners 
(clock-wise) 



                  std::vector<cv::Point2f>& detectedCorners) { 
 
      // 1. detect image keypoints 
      std::vector<cv::KeyPoint> keypoints; 
      detector->detect(image, keypoints); 
      // compute descriptors 
      cv::Mat descriptors; 
      descriptor->compute(image, keypoints, descriptors); 
 
      std::vector<cv::DMatch> matches; 
      cv::Mat bestHomography; 
      cv::Size bestSize; 
      int maxInliers = 0; 
      cv::Mat homography; 
 
      // Construction of the matcher   
      cv::BFMatcher matcher(normType); 
 
      // 2. robustly find homography for each pyramid level 
      for (int i = 0; i < numberOfLevels; i++) { 
        // find a RANSAC homography between target and image 
        matches.clear(); 
        // match descriptors 
        matcher.match(pyrDescriptors[i], descriptors, matches);  
        // validate matches using RANSAC 
        std::vector<cv::DMatch> inliers; 
        homography = ransacTest(matches, pyrKeypoints[i],  
                                keypoints, inliers); 
 
        if (inliers.size() > maxInliers) { // we have a better 
H 
          maxInliers = inliers.size(); 
          bestHomography = homography; 
          bestSize = pyramid[i].size(); 
        } 
 
      } 
 
      // 3. find the corner position on the image using best 
homography 
      if (maxInliers > 8) { // the estimate is valid 
 
        //target corners at best size 
        std::vector<cv::Point2f> corners; 
        corners.push_back(cv::Point2f(0, 0)); 
        corners.push_back(cv::Point2f(bestSize.width - 1, 0)); 



        corners.push_back(cv::Point2f(bestSize.width - 1,  
                                      bestSize.height - 1)); 
        corners.push_back(cv::Point2f(0, bestSize.height - 1));  
 
        // reproject the target corners 
        cv::perspectiveTransform(corners, detectedCorners, 
bestHomography); 
      } 
 
      return bestHomography; 
    } 

The following image shows the matching results obtained in the case of
our example:

See also
The Fast and robust homography scheme for real-time planar
target detection article by H. Bazargani, O. Bilaniuk and R.
Laganière in Journal of Real-Time Image Processing, May 2015,



describes a method to detecting a planar target in real-time. It also
describes the cv::RHO method for the cv::findHomography function.



Chapter 11. Reconstructing 3D
Scenes
In this chapter, we will cover the following recipes:

Calibrating a camera
Recovering camera pose
Reconstructing a 3D scene from calibrated cameras
Computing depth from stereo image

Introduction
We learned in the previous chapter how a camera captures a 3D scene
by projecting light rays on a 2D sensor plane. The image produced is an
accurate representation of what the scene looks like from a particular
point of view, at the instant the image was captured. However, by its
nature, the process of image formation eliminates all information
concerning the depth of the represented scene elements. This chapter
will teach how, under specific conditions, the 3D structure of the scene
and the 3D pose of the cameras that captured it, can be recovered. We
will see how a good understanding of projective geometry concepts
allows us to devise methods that enable 3D reconstruction. We will
therefore revisit the principle of image formation introduced in the
previous chapter; in particular, we will now take into consideration that
our image is composed of pixels.

Digital image formation
Let's now redraw a new version of the figure shown in Chapter 10 ,
Estimating Projective Relations in Images, describing the pin-hole
camera model. More specifically, we want to demonstrate the relation
between a point in 3D at position (X,Y,Z) and its image (x,y) on a
camera specified in pixel coordinates:



Notice the changes that have been made to the original figure. First, we
added a reference frame that we positioned at the center of the
projection. Second, we have the Y-axis pointing downward to get a
coordinate system compatible with the usual convention that places the
image origin in the upper-left corner of the image. Finally, we also
identified a special point on the image plane: considering the line coming
from the focal point that is orthogonal to the image plane, the point
(u0,v0) is the pixel position at which this line pierces the image plane.
This point is called the principal point. It could be logical to assume
that this principal point is at the center of the image plane, but in
practice, this one might be off by a few pixels, depending on the
precision with which the camera has been manufactured.

In the previous chapter, we learned that the essential parameters of a
camera in the pin-hole model are its focal length and the size of the
image plane (which defines the field of view of the camera). In addition,
since we are dealing with digital images, the number of pixels on the
image plane (its resolution) is another important characteristic of a
camera. We also learned previously that a 3D point (X,Y,Z) will be
projected onto the image plane at (fX/Z,fY/Z).

Now, if we want to translate this coordinate into pixels, we need to
divide the 2D image position by the pixel width (px) and height (py),



respectively. We notice that by dividing the focal length given in world
units (generally given in millimeters) by px, we obtain the focal length
expressed in (horizontal) pixels. Let's define this term, then, as fx.
Similarly, fy =f/py is defined as the focal length expressed in vertical
pixel units. The complete projective equation is therefore as follows:

Recall that (u0,v0) is the principal point that is added to the result in
order to move the origin to the upper-left corner of the image. Note also
that the physical size of a pixel can be obtained by dividing the size of
the image sensor (generally in millimeters) by the number of pixels
(horizontally or vertically). In modern sensors, pixels are generally
square, that is, they have the same horizontal and vertical size.

The preceding equations can be rewritten in matrix form as we did in
Chapter 10 , Estimating Projective Relations in Images. Here is the
complete projective equation in its most general form:





Calibrating a camera
Camera calibration is the process by which the different camera
parameters (that is, the ones appearing in the projective equation) are
obtained. One can obviously use the specifications provided by the
camera manufacturer, but for some tasks, such as 3D reconstruction,
these specifications are not accurate enough. By undertaking an
appropriate camera calibration step, accurate calibration information
can be obtained.

An active camera calibration procedure will proceed by showing known
patterns to the camera and analyzing the obtained images. An
optimization process will then determine the optimal parameter values
that explain the observations. This is a complex process that has been
made easy by the availability of OpenCV calibration functions.

How to do it...
To calibrate a camera, the idea is to show it a set of scene points for
which their 3D positions are known. Then, you need to observe where
these points project on the image. With the knowledge of a sufficient
number of 3D points and associated 2D image points, the exact camera
parameters can be inferred from the projective equation. Obviously, for
accurate results, we need to observe as many points as possible. One
way to achieve this would be to take one picture of a scene with many
known 3D points, but in practice, this is rarely feasible. A more
convenient way is to take several images of a set of some 3D points
from different viewpoints. This approach is simpler but requires you to
compute the position of each camera view in addition to the
computation of the internal camera parameters, which, fortunately, is
feasible.

OpenCV proposes that you use a chessboard pattern to generate the set
of 3D scene points required for calibration. This pattern creates points at
the corners of each square, and since this pattern is flat, we can freely
assume that the board is located at Z=0, with the X and Y axes well-



aligned with the grid.

In this case, the calibration process simply consists of showing the
chessboard pattern to the camera from different viewpoints. Here is one
example of a calibration pattern image made of 7x5 inner corners as
captured during the calibration step:

The good thing is that OpenCV has a function that automatically detects
the corners of this chessboard pattern. You simply provide an image and
the size of the chessboard used (the number of horizontal and vertical
inner corner points). The function will return the position of these
chessboard corners on the image. If the function fails to find the pattern,
then it simply returns false:

    // output vectors of image points 
    std::vector<cv::Point2f> imageCorners; 
    // number of inner corners on the chessboard 
    cv::Size boardSize(7,5); 
    // Get the chessboard corners 
    bool found = cv::findChessboardCorners( 
                         image,         // image of chessboard 
pattern 
                         boardSize,     // size of pattern 



                         imageCorners); // list of detected 
corners 

The output parameter, imageCorners, will simply contain the pixel
coordinates of the detected inner corners of the shown pattern. Note
that this function accepts additional parameters if you need to tune the
algorithm, which is not discussed here. There is also a special function
that draws the detected corners on the chessboard image, with lines
connecting them in a sequence:

    // Draw the corners 
    cv::drawChessboardCorners(image, boardSize,  
                      imageCorners, found); // corners have 
been found 

The following image is obtained:



The lines that connect the points show the order in which the points are
listed in the vector of detected image points. To perform a calibration,
we now need to specify the corresponding 3D points. You can specify
these points in the units of your choice (for example, in centimeters or in
inches); however, the simplest thing to do is to assume that each square
represents one unit. In that case, the coordinates of the first point would
be (0,0,0) (assuming that the board is located at a depth of Z=0), the
coordinates of the second point would be (1,0,0), and so on, the last
point being located at (6,4,0). There is a total of 35 points in this
pattern, which is too small to obtain an accurate calibration. To get more
points, you need to show more images of the same calibration pattern
from various points of view. To do so, you can either move the pattern in
front of the camera or move the camera around the board; from a
mathematical point of view, this is completely equivalent. The OpenCV
calibration function assumes that the reference frame is fixed on the
calibration pattern and will calculate the rotation and translation of the
camera with respect to the reference frame.

Let's now encapsulate the calibration process in a CameraCalibrator
class. The attributes of this class are as follows:

    class CameraCalibrator { 
 
      // input points: 
      // the points in world coordinates 
      // (each square is one unit) 
      std::vector<std::vector<cv::Point3f>> objectPoints; 
      // the image point positions in pixels 
      std::vector<std::vector<cv::Point2f>> imagePoints; 
      // output Matrices 
      cv::Mat cameraMatrix; 
      cv::Mat distCoeffs; 
      // flag to specify how calibration is done 
      int flag; 

Note that the input vectors of the scene and image points are in fact
made of std::vector of point instances; each vector element is a vector
of the points from one view. Here, we decided to add the calibration
points by specifying a vector of the chessboard image filename as input;
the method will take care of extracting the point coordinates from these



images:

    // Open chessboard images and extract corner points 
    int CameraCalibrator::addChessboardPoints(      
        const std::vector<std::string> & filelist, // list of 
filenames 
        cv::Size & boardSize) {   // calibration board size 
 
      // the points on the chessboard 
      std::vector<cv::Point2f> imageCorners; 
      std::vector<cv::Point3f> objectCorners; 
 
      // 3D Scene Points: 
      // Initialize the chessboard corners  
      // in the chessboard reference frame 
      // The corners are at 3D location (X,Y,Z)= (i,j,0) 
      for (int i=0; i<boardSize.height; i++) { 
        for (int j=0; j<boardSize.width; j++) { 
          objectCorners.push_back(cv::Point3f(i, j, 0.0f)); 
        } 
      } 
 
      // 2D Image points: 
      cv::Mat image; //to contain chessboard image 
      int successes = 0; 
      // for all viewpoints 
      for (int i=0; i<filelist.size(); i++) { 
 
        // Open the image 
        image = cv::imread(filelist[i],0); 
 
        // Get the chessboard corners 
        bool found = cv::findChessboardCorners( 
                         image,         // image of chessboard 
pattern  
                         boardSize,     // size of pattern 
                         imageCorners); // list of detected 
corners 
 
        // Get subpixel accuracy on the corners 
        if (found) { 
          cv::cornerSubPix(image, imageCorners,  
               cv::Size(5, 5), // half size of serach window 
               cv::Size(-1, -1),  
               cv::TermCriteria( cv::TermCriteria::MAX_ITER +    
                   cv::TermCriteria::EPS, 30, // max number of 



iterations 
                   0.1));                     // min accuracy 
 
          // If we have a good board, add it to our data 
          if (imageCorners.size() == boardSize.area()) { 
            //Add image and scene points from one view 
            addPoints(imageCorners, objectCorners); 
            successes++; 
          } 
        } 
 
        // If we have a good board, add it to our data 
        if (imageCorners.size() == boardSize.area()) { 
          //Add image and scene points from one view 
          addPoints(imageCorners, objectCorners); 
          successes++; 
        } 
      } 
      return successes; 
    } 

The first loop inputs the 3D coordinates of the chessboard, and the
corresponding image points are the ones provided by the
cv::findChessboardCorners function. This is done for all the available
viewpoints. Moreover, in order to obtain a more accurate image point
location, the cv::cornerSubPix function can be used; and as the name
suggests, the image points will then be localized with subpixel accuracy.
The termination criterion that is specified by the cv::TermCriteria
object defines the maximum number of iterations and the minimum
accuracy in subpixel coordinates. The first of these two conditions that
is reached will stop the corner refinement process.

When a set of chessboard corners have been successfully detected,
these points are added to our vectors of image and scene points using
our addPoints method. Once a sufficient number of chessboard images
have been processed (and consequently, a large number of 3D scene
point/2D image point correspondences are available), we can initiate the
computation of the calibration parameters as follows:

    // Calibrate the camera 
    // returns the re-projection error 
    double CameraCalibrator::calibrate(cv::Size &imageSize) { 



      // Output rotations and translations 
      std::vector<cv::Mat> rvecs, tvecs; 
 
      // start calibration 
      return 
        calibrateCamera(objectPoints,  // the 3D points 
                        imagePoints,   // the image points 
                        imageSize,     // image size 
                        cameraMatrix,  // output camera matrix 
                        distCoeffs,    // output distortion 
matrix 
                        rvecs, tvecs,  // Rs, Ts  
                        flag);         // set options 
    } 

In practice, 10 to 20 chessboard images are sufficient, but these must be
taken from different viewpoints at different depths. The two important
outputs of this function are the camera matrix and the distortion
parameters. These will be described in the next section.

How it works...
In order to explain the result of the calibration, we need to go back to
the projective equation presented in the introduction of this chapter.
This equation describes the transformation of a 3D point into a 2D point
through the successive application of two matrices. The first matrix
includes all of the camera parameters, which are called the intrinsic
parameters of the camera. This 3x3 matrix is one of the output matrices
returned by the cv::calibrateCamera function. There is also a function
called cv::calibrationMatrixValues that explicitly returns the value of
the intrinsic parameters given by a calibration matrix.

The second matrix is there to have the input points expressed into
camera-centric coordinates. It is composed of a rotation vector (a 3x3
matrix) and a translation vector (a 3x1 matrix). Remember that in our
calibration example, the reference frame was placed on the chessboard.
Therefore, there is a rigid transformation (made of a rotation component
represented by the matrix entries r1 to r9 and a translation represented
by t1, t2, and t3) that must be computed for each view. These are in the
output parameter list of the cv::calibrateCamera function. The rotation



and translation components are often called the extrinsic parameters
of the calibration, and they are different for each view. The intrinsic
parameters remain constant for a given camera/lens system.

The calibration results provided by the cv::calibrateCamera are
obtained through an optimization process. This process aims to find the
intrinsic and extrinsic parameters that minimize the difference between
the predicted image point position, as computed from the projection of
the 3D scene points, and the actual image point position, as observed on
the image. The sum of this difference for all the points specified during
the calibration is called the re-projection error.

The intrinsic parameters of our test camera obtained from a calibration
based on 27 chessboard images are fx=409 pixels, fy=408 pixels, u0=237
pixels, and v0=171pixels. Our calibration images have a size of 536x356
pixels. From the calibration results, you can see that, as expected, the
principal point is close to the center of the image, but yet off by few
pixels. The calibration images were taken using a Nikon D500 camera
with a 18mm lens. Looking at the manufacturer specifications, we find
that the sensor size of this camera is 23.5mm x 15.7mm, which gives us a
pixel size of 0.0438mm. The estimated focal length is expressed in pixels,
so multiplying the result by the pixel size gives us an estimated focal
length of 17.8mm, which is consistent with the actual lens we used.

Let's now turn our attention to the distortion parameters. So far, we have
mentioned that under the pin-hole camera model, we can neglect the
effect of the lens. However, this is only possible if the lens that is used to
capture an image does not introduce important optical distortions.
Unfortunately, this is not the case with lower quality lenses or with
lenses that have a very short focal length. Even the lens we used in this
experiment introduced some distortion: the edges of the rectangular
board are curved in the image. Note that this distortion becomes more
important as we move away from the center of the image. This is a
typical distortion observed with a fish-eye lens, and it is called radial
distortion.

It is possible to compensate for these deformations by introducing an



appropriate distortion model. The idea is to represent the distortions
induced by a lens by a set of mathematical equations. Once established,
these equations can then be reverted in order to undo the distortions
visible on the image. Fortunately, the exact parameters of the
transformation that will correct the distortions can be obtained together
with the other camera parameters during the calibration phase. Once this
is done, any image from the newly calibrated camera will be undistorted.
Therefore, we have added an additional method to our calibration class:

    // remove distortion in an image (after calibration) 
    cv::Mat CameraCalibrator::remap(const cv::Mat &image) { 
 
      cv::Mat undistorted; 
 
      if (mustInitUndistort) { // called once per calibration 
 
        cv::initUndistortRectifyMap(   
                     cameraMatrix, // computed camera matrix 
                     distCoeffs,   // computed distortion 
matrix 
                     cv::Mat(),    // optional rectification 
(none)  
                     cv::Mat(),    // camera matrix to generate 
undistorted 
                     image.size(), // size of undistorted 
                     CV_32FC1,     // type of output map 
                     map1, map2);  // the x and y mapping 
functions 
 
        mustInitUndistort= false; 
      } 
 
      // Apply mapping functions 
      cv::remap(image, undistorted, map1, map2,        
                cv::INTER_LINEAR);     // interpolation type 
 
      return undistorted; 
    } 

Running this code on one of our calibration image results in the
following undistorted image:



To correct the distortion, OpenCV uses a polynomial function that is
applied to the image points in order to move them to their undistorted
position. By default, five coefficients are used; a model made of eight
coefficients is also available. Once these coefficients are obtained, it is
possible to compute two cv::Mat mapping functions (one for the x
coordinate and one for the y coordinate) that will give the new
undistorted position of an image point on a distorted image. This is
computed by the cv::initUndistortRectifyMap function, and the
cv::remap function remaps all the points of an input image to a new
image. Note that because of the nonlinear transformation, some pixels of
the input image now fall outside the boundary of the output image. You
can expand the size of the output image to compensate for this loss of
pixels, but you now obtain output pixels that have no values in the input
image (they will then be displayed as black pixels).

There's more...



More options are available when it comes to camera calibration.

Calibration with known intrinsic parameters

When a good estimate of the camera's intrinsic parameters is known, it
could be advantageous to input them in the cv::calibrateCamera
function. They will then be used as initial values in the optimization
process. To do so, you just need to add the
cv::CALIB_USE_INTRINSIC_GUESS flag and input these values in the
calibration matrix parameter. It is also possible to impose a fixed value
for the principal point (cv::CALIB_FIX_PRINCIPAL_POINT), which can
often be assumed to be the central pixel. You can also impose a fixed
ratio for the focal lengths fx and fy (cv::CALIB_FIX_RATIO), in which
case, you assume that the pixels are square.

Using a grid of circles for calibration

Instead of the usual chessboard pattern, OpenCV also offers the
possibility to calibrate a camera by using a grid of circles. In this case,
the centers of the circles are used as calibration points. The
corresponding function is very similar to the function we used to locate
the chessboard corners, for example:

    cv::Size boardSize(7,7); 
    std::vector<cv::Point2f> centers; 
    bool found = cv:: findCirclesGrid(image, boardSize, 
centers); 

See also
The A flexible new technique for camera calibration article by Z.
Zhang in IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no 11, 2000, is a classic paper on the problem
of camera calibration



Recovering camera pose
When a camera is calibrated, it becomes possible to relate the captured
images with the outside world. We previously explained that if the 3D
structure of an object is known, then one can predict how the object will
be imaged on the sensor of the camera. The process of image formation
is indeed completely described by the projective equation that was
presented at the beginning of this chapter. When most of the terms of
this equation are known, then it becomes possible to infer the value of
the other elements (2D or 3D) through the observation of some images.
In this recipe, we will look at the camera pose recovery problem when a
known 3D structure is observed.

How to do it...
Let's consider a simple object, a bench in a park. We took an image of
this one using the camera/lens system calibrated in the previous recipe.
We also have manually identified eight distinct image points on the
bench that we will use for our camera pose estimation:



Having access to this object, it is possible to make some physical
measurements. The bench is composed of a seat that is 242.5cm x
53.5cm x 9cm and a back that is 242.5cm x 24cm x 9cm fixed 12cm over
the seat. Using this information, we can then easily derive the 3D
coordinates of the eight identified points in some object-centric
reference frame (here, we fixed the origin at the left extremity of the
intersection between the two planes). We can then create a cv::Point3f
vector containing these coordinates:

    // Input object points 
    std::vector<cv::Point3f> objectPoints; 
    objectPoints.push_back(cv::Point3f(0, 45, 0)); 
    objectPoints.push_back(cv::Point3f(242.5, 45, 0)); 
    objectPoints.push_back(cv::Point3f(242.5, 21, 0)); 
    objectPoints.push_back(cv::Point3f(0, 21, 0)); 
    objectPoints.push_back(cv::Point3f(0, 9, -9)); 
    objectPoints.push_back(cv::Point3f(242.5, 9, -9)); 



    objectPoints.push_back(cv::Point3f(242.5, 9, 44.5)); 
    objectPoints.push_back(cv::Point3f(0, 9, 44.5)); 

The question now is where the camera was with respect to these points
when the shown picture was taken. Since the coordinates of the image
of these known points on the 2D image plane are also known, then it
becomes easy to answer this question by using the cv::solvePnP
function. Here, the correspondence between the 3D and the 2D points
has been established manually, but one should be able to come up with
some methods that would allow you to obtain this information
automatically:

    // Input image points 
    std::vector<cv::Point2f> imagePoints; 
    imagePoints.push_back(cv::Point2f(136, 113)); 
    imagePoints.push_back(cv::Point2f(379, 114)); 
    imagePoints.push_back(cv::Point2f(379, 150)); 
    imagePoints.push_back(cv::Point2f(138, 135)); 
    imagePoints.push_back(cv::Point2f(143, 146)); 
    imagePoints.push_back(cv::Point2f(381, 166)); 
    imagePoints.push_back(cv::Point2f(345, 194)); 
    imagePoints.push_back(cv::Point2f(103, 161)); 
 
    // Get the camera pose from 3D/2D points 
    cv::Mat rvec, tvec; 
    cv::solvePnP( 
                 objectPoints, imagePoints,      // 
corresponding 3D/2D pts  
                 cameraMatrix, cameraDistCoeffs, // calibration   
                 rvec, tvec);                    // output pose  
 
    //Convert to 3D rotation matrix 
    cv::Mat rotation; 
    cv::Rodrigues(rvec, rotation); 

This function in fact, computes the rigid transformation (rotation and
translation) that brings the object coordinates in the camera-centric
reference frame (that is, the one that has its origin at the focal point). It
is also important to note that the rotation computed by this function is
given in the form of a 3D vector. This is a compact representation in
which the rotation to apply is described by a unit vector (an axis of
rotation) around which the object is rotated by a certain angle. This axis-



angle representation is also called the Rodrigues' rotation formula. In
OpenCV, the angle of the rotation corresponds to the norm of the output
rotation vector, the latter being aligned with the axis of rotation. This is
why the cv::Rodrigues function is used to obtain the 3D matrix of
rotation that appears in our projective equation.

The pose recovery procedure described here is simple, but how do we
know we obtained the right camera/object pose information? We can
visually assess the quality of the results by using the cv::viz module
that gives us the ability to visualize 3D information. The use of this
module is explained in the last section of this recipe, but let's display a
simple 3D representation of our object and the camera that captured it:

It might be difficult to judge of the quality of the pose recovery just by
looking at this image but if you test the example of this recipe on your



computer, you will have the possibility to move this representation in 3D
using your mouse, which should give you a better sense of the solution
obtained.

How it works...
In this recipe, we assumed that the 3D structure of the object was
known, as well as the correspondence between sets of object points and
image points. The camera's intrinsic parameters were also known
through calibration. If you look at our projective equation presented at
the end of the Digital image formation section of the introduction of
this chapter, this means that we have points for which coordinates
(X,Y,Z) and (x,y) are known. We also have the elements of the first
matrix known (the intrinsic parameters). Only the second matrix is
unknown; this is the one that contains the extrinsic parameters of the
camera that is the camera/object pose information. Our objective is then
to recover these unknown parameters from the observation of 3D scene
points. This problem is known as the Perspective-n-Point (PnP)
problem.

Rotation has three degrees of freedom (for example, angle of rotation
around the three axes) and translation also has three degrees of freedom.
We therefore have a total of six unknowns. For each object point/image
point correspondence, the projective equation gives us three algebraic
equations, but since the projective equation is up to a scale factor, we
only have two independent equations. A minimum of three points is
therefore required to solve this system of equations. Obviously, more
points provide a more reliable estimate.

In practice, many different algorithms have been proposed to solve this
problem and OpenCV proposes a number of different implementation in
its cv::solvePnP function. The default method consists in optimizing
what is called the reprojection error. Minimizing this type of error is
considered to be the best strategy to get accurate 3D information from
camera images. In our problem, it corresponds to finding the optimal
camera position that minimizes the 2D distance between the projected
3D points (as obtained by applying the projective equation) and the



observed image points given as input.

Note that OpenCV also has a cv::solvePnPRansac function. As the
name suggests, this function uses the RANSAC algorithm in order to
solve the PnP problem. This means that some of the object point/image
point correspondences may be wrong and the function will return the
ones that have been identified as outliers. This is very useful when these
correspondences have been obtained through an automatic process that
can fail for some points.

There's more...
When working with 3D information, it often difficult to validate the
solutions obtained. To this end, OpenCV offers a simple yet powerful
visualization module that facilitates the development and debugging of
3D vision algorithms. It allows inserting points, lines, cameras and other
objects in a virtual 3D environment that you can interactively visualize
from various points of views.

cv::Viz, a 3D Visualizer module

cv::Viz is an extra module of the OpenCV library that is built on top of
the Visualization Toolkit (VTK) open source library. This is a powerful
framework used for 3D computer graphics. With cv::viz, you create a
3D virtual environment to which you can add a variety of objects. A
visualization window is created that displays the environment from a
given point of view. You saw in this recipe an example of what can be
displayed in a cv::viz window. This window responds to mouse events
that are used to navigate inside the environment (through rotations and
translations). This section describes the basic use of the cv::viz module.

The first thing to do is to create the visualization window. Here, we use a
white background:

    // Create a viz window 
    cv::viz::Viz3d visualizer("Viz window"); 
    visualizer.setBackgroundColor(cv::viz::Color::white()); 



Next, you create your virtual objects and insert them into the scene.
There is a variety of predefined objects. One of them is particularly
useful for us; it is the one that creates a virtual pin-hole camera:

    // Create a virtual camera 
    cv::viz::WCameraPosition cam( 
                    cMatrix,     // matrix of intrinsics 
                    image,       // image displayed on the 
plane 
                    30.0,        // scale factor 
                    cv::viz::Color::black()); 
    // Add the virtual camera to the environment 
    visualizer.showWidget("Camera", cam); 

The cMatrix variable is a cv::Matx33d (that is, a cv::Matx<double,3,3>)
instance containing the intrinsic camera parameters as obtained from
calibration. By default, this camera is inserted at the origin of the
coordinate system. To represent the bench, we used two rectangular
cuboid objects:

    // Create a virtual bench from cuboids 
    cv::viz::WCube plane1(cv::Point3f(0.0, 45.0, 0.0),              
                          cv::Point3f(242.5, 21.0, -9.0),   
                          true,     // show wire frame  
                          cv::viz::Color::blue()); 
    plane1.setRenderingProperty(cv::viz::LINE_WIDTH, 4.0); 
    cv::viz::WCube plane2(cv::Point3f(0.0, 9.0, -9.0), 
                          cv::Point3f(242.5, 0.0, 44.5),                 
                          true,    // show wire frame  
                          cv::viz::Color::blue()); 
    plane2.setRenderingProperty(cv::viz::LINE_WIDTH, 4.0); 
    // Add the virtual objects to the environment 
    visualizer.showWidget("top", plane1); 
    visualizer.showWidget("bottom", plane2); 

This virtual bench is also added at the origin; it then needs to be moved
at its camera-centric position as found from our cv::solvePnP function.
It is the responsibility of the setWidgetPose method to perform this
operation. This one simply applies the rotation and translation
components of the estimated motion:

    cv::Mat rotation; 
    // convert vector-3 rotation 



    // to a 3x3 rotation matrix 
    cv::Rodrigues(rvec, rotation); 
 
    // Move the bench  
    cv::Affine3d pose(rotation, tvec); 
    visualizer.setWidgetPose("top", pose); 
    visualizer.setWidgetPose("bottom", pose); 

The final step is to create a loop that keeps displaying the visualization
window. The 1ms pause is there to listen to mouse events:

    // visualization loop 
    while(cv::waitKey(100)==-1 && !visualizer.wasStopped()) { 
 
      visualizer.spinOnce(1,      // pause 1ms  
                          true);  // redraw 
    } 

This loop will stop when the visualization window is closed or when a
key is pressed over an OpenCV image window. Try to apply inside this
loop some motion on an object (using setWidgetPose); this is how
animation can be created.

See also
Model-based object pose in 25 lines of code by D. DeMenthon and
L. S. Davis, in the European Conference on Computer Vision, 1992,
pp.335-343 is a famous method for recovering camera pose from
scene points
The Matching images using random sample consensus recipe in
Chapter 10 , Estimating Projective Relations in Images describes
the RANSAC algorithm
The Installing the OpenCV library recipe in Chapter 1 , Playing
with Images explains how to install the RANSAC cv::viz extra
module



Reconstructing a 3D scene from
calibrated cameras
We saw in the previous recipe that it is possible to recover the position
of a camera observing a 3D scene, when this one is calibrated. The
approach described took advantage of the fact that, sometimes, the
coordinates of some 3D points visible in the scene might be known. We
will now learn that if a scene is observed from more than one point of
view, 3D pose and structure can be reconstructed even if no information
about the 3D scene is available. This time, we will use correspondences
between image points in the different views in order to infer 3D
information. We will introduce a new mathematical entity encompassing
the relation between two views of a calibrated camera, and we will
discuss the principle of triangulation in order to reconstruct 3D points
from 2D images.

How to do it...
Let's again use the camera we calibrated in the first recipe of this
chapter and take two pictures of some scene. We can match feature
points between these two views using, for example, the SIFT detector
and descriptor presented in Chapter 8 , Detecting Interest Points and
Chapter 9 , Describing and Matching interest points.

The fact that the calibration parameters of the camera are available,
allows us to work in world coordinates; and therefore establish a
physical constraint between the camera poses and the position of the
corresponding points. Basically, we introduce a new mathematical entity
called the Essential matrix, which is the calibrated version of the
fundamental matrix introduced in the previous chapter. Therefore, there
is a cv::findEssentialMat function that's identical to the
cv::findFundametalMat that was used in the Computing the
fundamental matrix of an image pair recipe in Chapter 10 , Estimating
Projective Relations in Images. We can call this function with the
established point correspondences and through a RANSAC scheme,



filter out the outlier points to retain only the matches that comply with
the found geometry:

    // vector of keypoints and descriptors 
    std::vector<cv::KeyPoint> keypoints1; 
    std::vector<cv::KeyPoint> keypoints2; 
    cv::Mat descriptors1, descriptors2; 
 
    // Construction of the SIFT feature detector  
    cv::Ptr<cv::Feature2D> ptrFeature2D =   
                           cv::xfeatures2d::SIFT::create(500); 
 
    // Detection of the SIFT features and associated 
descriptors 
    ptrFeature2D->detectAndCompute(image1, cv::noArray(),  
                                   keypoints1, descriptors1); 
    ptrFeature2D->detectAndCompute(image2, cv::noArray(),  
                                   keypoints2, descriptors2); 
 
    // Match the two image descriptors 
    // Construction of the matcher with crosscheck  
    cv::BFMatcher matcher(cv::NORM_L2, true); 
    std::vector<cv::DMatch> matches; 
    matcher.match(descriptors1, descriptors2, matches); 
 
    // Convert keypoints into Point2f 
    std::vector<cv::Point2f> points1, points2; 
    for (std::vector<cv::DMatch>::const_iterator it =  
           matches.begin(); it != matches.end(); ++it) { 
 
      // Get the position of left keypoints 
      float x = keypoints1[it->queryIdx].pt.x; 
      float y = keypoints1[it->queryIdx].pt.y; 
      points1.push_back(cv::Point2f(x, y)); 
      // Get the position of right keypoints 
      x = keypoints2[it->trainIdx].pt.x; 
      y = keypoints2[it->trainIdx].pt.y; 
      points2.push_back(cv::Point2f(x, y)); 
    } 
 
    // Find the essential between image 1 and image 2 
    cv::Mat inliers; 
    cv::Mat essential = cv::findEssentialMat(points1, points2,             
                                Matrix,         // intrinsic 
parameters 
                                cv::RANSAC,



                                0.9, 1.0,       // RANSAC 
method 
                                inliers);       // extracted 
inliers 

The resulting set of inliers matches is then as follows:

As it will be explained in the next section, the essential matrix
encapsulates the rotation and translation components that separate the
two views. It is therefore possible to recover the relative pose between
our two views directly from this matrix. OpenCV has a function that
performs this operation, it is the cv::recoverPose function. This one is
used as follows:

    // recover relative camera pose from essential matrix 
    cv::Mat rotation, translation; 
    cv::recoverPose(essential,             // the essential 
matrix 
                    points1, points2,      // the matched 
keypoints 
                    cameraMatrix,          // matrix of 
intrinsics 
                    rotation, translation, // estimated motion 
                    inliers);              // inliers matches 

Now that we have the relative pose between the two cameras, it
becomes possible to estimate the location of points for which we have
established correspondence between the two views. The following



screenshot illustrates how this is possible. It shows the two cameras at
their estimated position (the left one is placed at the origin). We also
have selected a pair of corresponding points and, for these image points,
we traced a ray that, according to the projective geometry model,
corresponds to all possible locations of the associated 3D point:

Clearly, since these two image points have been generated by the same
3D point, the two rays must intersect at one location, the location of the
3D point. The method that consists of intersecting the lines of projection
of two corresponding image points, when the relative position of two
cameras is known, is called triangulation. This process first requires the
two projection matrices and can be repeated for all matches. Remember,
however, that these ones must be expressed in world coordinates; this is
done here by using the cv::undistortPoints function.



Finally, we call our triangulate function, which computes the position of
the triangulated point, and that will be described in the next section:

    // compose projection matrix from R,T 
    cv::Mat projection2(3, 4, CV_64F); // the 3x4 projection 
matrix 
    rotation.copyTo(projection2(cv::Rect(0, 0, 3, 3))); 
    translation.copyTo(projection2.colRange(3, 4)); 
  
    // compose generic projection matrix  
    cv::Mat projection1(3, 4, CV_64F, 0.); // the 3x4 
projection matrix 
    cv::Mat diag(cv::Mat::eye(3, 3, CV_64F)); 
    diag.copyTo(projection1(cv::Rect(0, 0, 3, 3))); 
 
    // to contain the inliers 
    std::vector<cv::Vec2d> inlierPts1; 
    std::vector<cv::Vec2d> inlierPts2; 
 
    // create inliers input point vector for triangulation 
    int j(0); 
    for (int i = 0; i < inliers.rows; i++) { 
      if (inliers.at<uchar>(i)) { 
        inlierPts1.push_back(cv::Vec2d(points1[i].x, 
points1[i].y)); 
        inlierPts2.push_back(cv::Vec2d(points2[i].x, 
points2[i].y)); 
      } 
    } 
 
    // undistort and normalize the image points 
    std::vector<cv::Vec2d> points1u; 
    cv::undistortPoints(inlierPts1, points1u,  
                        cameraMatrix, cameraDistCoeffs); 
    std::vector<cv::Vec2d> points2u; 
    cv::undistortPoints(inlierPts2, points2u,  
                        cameraMatrix, cameraDistCoeffs); 
 
    // triangulation 
    std::vector<cv::Vec3d> points3D; 
    triangulate(projection1, projection2,  
                points1u, points2u, points3D); 

A cloud of 3D points located on the surface of the scene elements is thus
found:



Note that from this new point of view, we can see that the two rays we
drew do not intersect as they were supposed to. This fact will be
discussed in the next section.

How it works...
The calibration matrix is the entity allowing us to transform pixel
coordinates into world coordinates. We can then more easily relate
image points to the 3D points that have produced them. This is
demonstrated in the following figure, which we will now use to
demonstrate a simple relationship between a world point and its images:



The figure shows two cameras separated by a rotation R and a
translation T. It is interesting to note that the translation vector T joins
the centers of projection of the two cameras. We also have a vector x
joining the first camera center to an image point and a vector x' joining
the second camera center to the corresponding image point. Since we
have the relative motion between the two cameras, we can express the
orientation of x in terms of the second camera reference as Rx. Now, if
you carefully observe the geometry of the image points shown, you will
observe that vectors T, Rx, and x' are all coplanar. This fact can be
expressed by the following mathematical relation:

It was possible to reduce the first relation to a single 3x3 matrix E



because a cross-product can also be expressed by a matrix operation.
This matrix E is called the essential matrix and the associated equation is
the calibrated equivalent of the epipolar constraint presented in the
Computing the fundamental matrix of an image pair recipe in Chapter
10 , Estimating Projective Relations in Images. We can then estimate
this one from image correspondences, as we did for the fundamental
matrix, but this time expressing these ones in world coordinates. Also, as
demonstrated, the essential matrix is built from the rotation and
translation components of the motion between the two cameras. This
means that once this one has been estimated, it can be decomposed to
obtain the relative pose between the cameras. This is what we did by
using the cv::recoverPose function. This function calls the
cv::decomposeEssentialMat function, which produces four possible
solutions for the relative pose. The right one is identified by looking at
the set of provided matches to determine the solution that is physically
possible.

Once the relative pose between the cameras has been obtained, the
position of any point corresponding to a match pair is recovered through
triangulation. Different methods have been proposed to solve the
triangulation problem. Probably the simplest solution consists of
considering the two projection matrices, P and P'. The seek 3D point in
homogenous coordinates can be expressed as X=[X,Y,Z,1]T, and we
know that x=PX and x'=P'X. Each of these two homogenous equations
brings two independent equations, which is sufficient to solve the three
unknowns of the 3D point position. This over determined system of
equation can be solved using a least-square approach, which can be
accomplished using a convenient OpenCV utility function called
cv::solve. The complete function is as follows:

    // triangulate using Linear LS-Method 
    cv::Vec3d triangulate(const cv::Mat &p1,  
                          const cv::Mat &p2,                 
                          const cv::Vec2d &u1,  
                          const cv::Vec2d &u2) { 
 
    // system of equations assuming image=[u,v] and X=[x,y,z,1]  
    // from u(p3.X)= p1.X and v(p3.X)=p2.X 
    cv::Matx43d A(u1(0)*p1.at<double>(2, 0) - p1.at<double>(0, 



0),  
                  u1(0)*p1.at<double>(2, 1) - p1.at<double>(0, 
1),                      
                  u1(0)*p1.at<double>(2, 2) - p1.at<double>(0, 
2),   
                  u1(1)*p1.at<double>(2, 0) - p1.at<double>(1, 
0),                 
                  u1(1)*p1.at<double>(2, 1) - p1.at<double>(1, 
1),   
                  u1(1)*p1.at<double>(2, 2) - p1.at<double>(1, 
2),  
                  u2(0)*p2.at<double>(2, 0) - p2.at<double>(0, 
0),  
                  u2(0)*p2.at<double>(2, 1) - p2.at<double>(0, 
1),  
                  u2(0)*p2.at<double>(2, 2) - p2.at<double>(0, 
2),  
                  u2(1)*p2.at<double>(2, 0) - p2.at<double>(1, 
0),          
                  u2(1)*p2.at<double>(2, 1) - p2.at<double>(1, 
1),    
                  u2(1)*p2.at<double>(2, 2) - p2.at<double>(1, 
2)); 
 
    cv::Matx41d B(p1.at<double>(0, 3) - u1(0)*p1.at<double>(2, 
3), 
                  p1.at<double>(1, 3) - u1(1)*p1.at<double>(2, 
3), 
                  p2.at<double>(0, 3) - u2(0)*p2.at<double>(2, 
3),  
                  p2.at<double>(1, 3) - u2(1)*p2.at<double>(2, 
3)); 
 
    // X contains the 3D coordinate of the reconstructed point 
    cv::Vec3d X; 
    // solve AX=B 
    cv::solve(A, B, X, cv::DECOMP_SVD); 
    return X; 
  } 

We have noted in the previous section that very often, because of noise
and digitization, the projection lines that should normally intersect do
not intersect in practice. The least-square solution will therefore find a
solution somewhere around the point of intersection. Also, this method
will not work if you try to reconstruct a point at infinity. This is because,



for such a point, the fourth element of the homogenous coordinates
should be at 0 not at 1 as assumed.

Finally, it is important to understand that this 3D reconstruction is done
up to a scale factor only. If you need to make real measurements, you
need to know at least one physical distance, for example, the real
distance between the two cameras or the height of one of the visible
objects.

There's more...
The 3D reconstruction is a rich field of research in computer vision, and
there is much more to explore in the OpenCV library on the subject.

Decomposing a homography

We learned in this recipe that an essential matrix can be decomposed in
order to recover the rotation and translation between two cameras. We
also learned in the previous chapter that a homography exists between
two views of a plane. In this case, this homography contains also the
rotational and translational components. In addition, it contains
information about the plane, namely its normal with respect to each
camera. The function cv::decomposeHomographyMat can be used to
decompose this matrix; the condition, however, is to have a calibrated
camera.

Bundle adjustment

In this recipe, we first estimate the camera position from matches and
then reconstruct the associated 3D points through triangulation. It is
possible to generalize this process by using any number of views. For
each of these views, feature points are detected and are matched with
the other views. Using this information, it is possible to write equations
that relate the rotations and translations between the views, the set of
3D points and the calibration information. All these unknowns can be
optimized together through a large optimization process that aims at
minimizing the reprojection errors of all points in each view where they
are visible. This combined optimization procedure is called bundle



adjustment. Have a look at the cv::detail::BundleAdjusterReproj
class, which implements a camera parameters refinement algorithm that
minimizes the sum of the reprojection error squares.

See also
Triangulation by R. Hartley and P. Sturm in Computer Vision and
Image Understanding vol. 68, no. 2, 1997 presents a formal analysis
of different triangulation methods
Modeling the World from Internet Photo Collections by N. Snavely,
S.M. Seitz, and R. Szeliski in International Journal of Computer
Vision, vol. 80, no 2, 2008 describes a large-scale application of 3D
reconstruction through bundle adjustment



Computing depth from stereo
image
Humans view the world in three dimensions using their two eyes. Robots
can do the same when they are equipped with two cameras. This is
called stereovision. A stereo rig is a pair of cameras mounted on a
device, looking at the same scene and separated by a fixed baseline
(distance between the two cameras). This recipe will show you how a
depth map can be computed from two stereo images by computing
dense correspondence between the two views.

Getting ready
A stereovision system is generally made of two side-by-side cameras
looking at the same direction. The following figure illustrates such a
stereo system in a perfectly aligned configuration:



Under this ideal configuration the cameras are only separated by a
horizontal translation and therefore all epipolar lines are horizontal. This
means that corresponding points have the same y coordinates, which
reduces the search for matches to a 1D line. The difference in their x
coordinates depends on the depth of the points. Points at infinity have
image points at the same (x,y) coordinates and the closer the points are
to the stereo rig the greater will be the difference of their x coordinates.
This fact can be demonstrated formally by looking at the projective
equation. When cameras are separated by a pure horizontal translation,
then the projective equation of the second camera (the one on the right)
becomes this:

Here, for simplicity, we assume square pixels and same calibration
parameters for both cameras. Now if you compute the difference of x-
x' (do not forget to divide by s to normalize the homogenous
coordinates) and isolate the z coordinate, you obtain the following:



The term (x-x') is called the disparity. To compute the depth map of a
stereovision system, the disparity of each pixel must be estimated. This
recipe will show you how to do it.

How to do it...
The ideal configuration shown in the previous section is, in practice,
very difficult to realize. Even if they are accurately positioned, the
cameras of the stereo rig will unavoidably include some extra
translational and rotational components. But, fortunately, the images can
be rectified such to produce horizontal epilines. This can be achieved by
computing the fundamental matrix of the stereo system using, for
example, the robust matching algorithm of the previous chapter. This is
what we did for the following stereo pair (with some epipolar lines
drawn on it):

OpenCV offers a rectifying function that uses a homographic
transformation to project the image plane of each camera onto perfectly
aligned virtual plane. This transformation is computed from a set of
matched points and a fundamental matrix. Once computed, these
homographies are then used to wrap the images:



    // Compute homographic rectification 
    cv::Mat h1, h2; 
    cv::stereoRectifyUncalibrated(points1, points2,  
                                  fundamental,  
                                  image1.size(), h1, h2); 
 
    // Rectify the images through warping 
    cv::Mat rectified1; 
    cv::warpPerspective(image1, rectified1, h1, image1.size());  
    cv::Mat rectified2; 
    cv::warpPerspective(image2, rectified2, h2, image1.size());  

For our example, the rectified image pair is as follows:

Computing the disparity map can then be accomplished using methods
that assume parallelism of the cameras (and consequently horizontal
epipolar lines):

    // Compute disparity 
    cv::Mat disparity; 
    cv::Ptr<cv::StereoMatcher> pStereo =  
         cv::StereoSGBM::create(0,   // minimum disparity 
                                32,  // maximum disparity 
                                5);  // block size 
    pStereo->compute(rectified1, rectified2, disparity); 

The obtained disparity map can then be displayed as an image. Bright
values correspond to high disparities and, from what we learned earlier



in this recipe, those high disparity values correspond to proximal objects:

The quality of the computed disparity mainly depends on the
appearance of the different objects that compose the scene. Highly-
textured regions tend to produce more accurate disparity estimates since
they can be non-ambiguously matched. Also, a larger baseline increases
the range of detectable depth values. However, enlarging the baseline
also makes disparity computation more complex and less reliable.

How it works...
Computing disparities is a pixel matching exercise. We already
mentioned that when the images are properly rectified, the search space
is conveniently aligned with the image rows. The difficulty, however, is
that, in stereovision, we are generally seeking a dense disparity map,
that is, we want to match every pixel of one image with the pixels of the
other image.

This can be more challenging than selecting a few distinctive points in
an image and finding their corresponding points in the other image.
Disparity computation is therefore a complex process that is generally



composed of four steps:
1. Matching cost calculation.
2. Cost aggregation.
3. Disparity computation and optimization.
4. Disparity refinement.

These steps are detailed in the next paragraph.

Assigning a disparity to one pixel, is putting a pair of points in
correspondence in a stereo set. Finding the best disparity map is often
posed as an optimization problem. With this perspective, matching two
points has a cost that must be computed following a defined metric. This
can be, for example, a simple absolute or squared difference of
intensities, colors or gradients. In the search for an optimal solution, the
matching cost is generally aggregated over a region in order to cope with
noise local ambiguity. The global disparity map can then be estimated by
evaluating an energy function that includes terms to smooth the disparity
map, take into account any possible occlusion, and enforce a uniqueness
constraint. Finally, a post-processing step is often applied in order to
refine the disparity estimates during which, for example, planar regions
are detected or depth discontinuities are detected.

OpenCV implements a number of disparity computation methods. Here,
we used the cv::StereoSGBM approach. The simplest method is
cv::StereoBM , which is based on block matching.

Finally, it should be noted that a more accurate rectification can be
performed if you are ready to undergo a full calibration process. The
cv::stereoCalibrate and cv::stereoRectify functions are in this case
used in conjunction with a calibration pattern. The rectification mapping
then computes new projection matrices for the cameras instead of
simple homographies.

See also
The article A Taxonomy and Evaluation of Dense two-Frame Stereo
Correspondence Algorithms by D. Scharstein and R. Szeliski in



International Journal of Computer Vision, vol. 47, 2002 is a classic
reference on disparity computation methods
The article Stereo processing by semiglobal matching and mutual
information by H. Hirschmuller in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 30, no 2, pp. 328-341, 2008
describes the approach used for computing the disparity in this
recipe



Chapter 12. Processing Video
Sequences
In this chapter, we will cover the following recipes:

Reading video sequences
Processing the video frames
Writing video sequences
Extracting the foreground objects in a video

Introduction
Video signals constitute a rich source of visual information. They are
made of a sequence of images, called frames, that are taken at regular
time intervals (specified as the frame rate, generally expressed in
frames per second) and show a scene in motion. With the advent of
powerful computers, it is now possible to perform advanced visual
analysis on video sequences-sometimes at rates close to, or even faster
than, the actual video frame rate. This chapter will show you how to
read, process, and store video sequences.

We will see that once the individual frames of a video sequence have
been extracted, the different image processing functions presented in
this book can be applied to each of them. In addition, we will also look
at algorithms that perform a temporal analysis of the video sequence,
comparing adjacent frames and accumulating image statistics over time
in order to extract foreground objects.



Reading video sequences
In order to process a video sequence, we need to be able to read each of
its frames. OpenCV has put in place an easy-to-use framework that can
help us perform frame extraction from video files or even from USB or
IP cameras. This recipe shows you how to use it.

How to do it...
Basically, all you need to do in order to read the frames of a video
sequence is create an instance of the cv::VideoCapture class. You then
create a loop that will extract and read each video frame. Here is a basic
main function that displays the frames of a video sequence:

    int main() 
    { 
      // Open the video file 
      cv::VideoCapture capture("bike.avi"); 
      // check if video successfully opened 
      if (!capture.isOpened()) 
        return 1; 
 
      // Get the frame rate 
      double rate= capture.get(CV_CAP_PROP_FPS); 
 
      bool stop(false); 
      cv::Mat frame;    // current video frame 
      cv::namedWindow("Extracted Frame"); 
 
      // Delay between each frame in ms 
      // corresponds to video frame rate 
      int delay= 1000/rate; 
 
      // for all frames in video 
      while (!stop) { 
 
        // read next frame if any 
        if (!capture.read(frame)) 
          break; 
 
        cv::imshow("Extracted Frame",frame); 
 



        // introduce a delay 
        // or press key to stop 
        if (cv::waitKey(delay)>=0) 
          stop= true; 
      } 
 
      // Close the video file. 
      // Not required since called by destructor 
      capture.release(); 
      return 0; 
    } 

A window will appear on which the video will play as shown in the
following screenshot:

How it works...
To open a video, you simply need to specify the video filename. This
can be done by providing the name of the file in the constructor of the
cv::VideoCapture object. It is also possible to use the open method if



the cv::VideoCapture object has already been created. Once the video
is successfully opened (this can be verified through the isOpened
method), it is possible to start frame extraction. It is also possible to
query the cv::VideoCapture object for information associated with the
video file by using its get method with the appropriate flag. In the
preceding example, we obtained the frame rate using the
CV_CAP_PROP_FPS flag. Since it is a generic function, it always returns a
double even if another type would be expected in some cases. For
example, the total number of frames in the video file would be obtained
(as an integer) as follows:

    long t= static_cast<long>( 
capture.get(CV_CAP_PROP_FRAME_COUNT)); 

Have a look at the different flags that are available in the OpenCV
documentation in order to find out what information can be obtained
from the video.

There is also a set method that allows you to input parameters into the
cv::VideoCapture instance. For example, you can request to move to a
specific frame using the CV_CAP_PROP_POS_FRAMES flag:

    // goto frame 100 
    double position= 100.0; 
    capture.set(CV_CAP_PROP_POS_FRAMES, position); 

You can also specify the position in milliseconds using
CV_CAP_PROP_POS_MSEC, or you can specify the relative position inside
the video using CV_CAP_PROP_POS_AVI_RATIO (with 0.0 corresponding to
the beginning of the video and 1.0 to the end). The method returns true
if the requested parameter setting is successful. Note that the possibility
to get or set a particular video parameter largely depends on the codec
that is used to compress and store the video sequence. If you are
unsuccessful with some parameters, that could be simply due to the
specific codec you are using.

Once the captured video is successfully opened, the frames can be
sequentially obtained by repetitively calling the read method, as we did



in the example of the previous section. One can equivalently call the
overloaded reading operator:

    capture >> frame; 

It is also possible to call the two basic methods:

    capture.grab(); 
    capture.retrieve(frame); 

Also note how, in our example, we introduced a delay in displaying each
frame. This is done using the cv::waitKey function. Here, we set the
delay at a value that corresponds to the input video frame rate (if fps is
the number of frames per second, then 1/fps is the delay between two
frames in milliseconds). You can obviously change this value to display
the video at a slower or faster speed. However, if you are going to
display the video frames, it is important that you insert such a delay if
you want to make sure that the window has sufficient time to refresh
(since it is a process of low priority, it will never refresh if the CPU is
too busy). The cv::waitKey function also allows us to interrupt the
reading process by pressing any key. In this case, the function returns
the ASCII code of the key that is pressed. Note that, if the delay
specified to the cv::waitKey function is 0, then it will wait indefinitely
for the user to press a key. This is very useful if someone wants to trace
a process by examining the results frame by frame.

The final statement calls the release method, which will close the video
file. However, this call is not required since release is also called by the
cv::VideoCapture destructor.

It is important to note that in order to open the specified video file, your
computer must have the corresponding codec installed; otherwise,
cv::VideoCapture will not be able to decode the input file. Normally, if
you are able to open your video file with a video player on your
machine (such as Windows Media Player), then OpenCV should also be
able to read this file.

There's more...



You can also read the video stream produced by a camera that is
connected to your computer (a USB camera, for example). In this case,
you simply specify an ID number (an integer) instead of a filename to
the open function. Specifying 0 for the ID will open the default installed
camera. In this case, the role of the cv::waitKey function that stops the
processing becomes essential, since the video stream from the camera
will be infinitely read.

Finally, it is also possible to load a video from the Web. In this case, all
you have to do is provide the correct address, for example:

    cv::VideoCapture 
capture("http://www.laganiere.name/bike.avi"); 

See also
The Writing video sequences recipe in this chapter has more
information on video codecs.
The http://ffmpeg.org/ website presents a complete open source and
cross-platform solution for audio/video reading, recording,
converting, and streaming. The OpenCV classes that manipulate
video files are built on top of this library.

http://ffmpeg.org/


Processing the video frames
In this recipe, our objective is to apply some processing functions to
each of the frames of a video sequence. We will do this by encapsulating
the OpenCV video capture framework into our own class. Among other
things, this class will allow us to specify a function that will be called
each time a new frame is extracted.

How to do it...
What we want is to be able to specify a processing function (a callback
function) that will be called for each frame of a video sequence. This
function can be defined as receiving a cv::Mat instance and outputting a
processed frame. Therefore, in our framework, the processing function
must have the following signature to be a valid callback:

    void processFrame(cv::Mat& img, cv::Mat& out); 

As an example of such a processing function, consider the following
simple function that computes the Canny edges of an input image:

    void canny(cv::Mat& img, cv::Mat& out) { 
      // Convert to gray 
      if (img.channels()==3) 
        cv::cvtColor(img,out, cv::COLOR_BGR2GRAY); 
      // Compute Canny edges 
      cv::Canny(out,out,100,200); 
      // Invert the image 
      cv::threshold(out,out,128,255,cv::THRESH_BINARY_INV); 
    } 

Our VideoProcessor class encapsulates all aspects of a video-processing
task. Using this class, the procedure will be to create a class instance,
specify an input video file, attach the callback function to it, and then
start the process. Programmatically, these steps are accomplished using
our proposed class, as follows:

      // Create instance 
      VideoProcessor processor; 



      // Open video file 
      processor.setInput("bike.avi"); 
      // Declare a window to display the video 
      processor.displayInput("Current Frame"); 
      processor.displayOutput("Output Frame"); 
      // Play the video at the original frame rate 
      processor.setDelay(1000./processor.getFrameRate()); 
      // Set the frame processor callback function 
      processor.setFrameProcessor(canny); 
      // Start the process 
      processor.run(); 

If this code is run, then two windows will play the input video and the
output result at the original frame rate (a consequence of the delay
introduced by the setDelay method). For example, considering the input
video for which a frame is shown in the previous recipe, the output
window will look as follows:

How it works...



As we did in other recipes, our objective was to create a class that
encapsulates the common functionalities of a video-processing
algorithm. As one might expect, the class includes several member
variables that control the different aspects of the video frame
processing:

    class VideoProcessor { 
 
      private: 
 
       // the OpenCV video capture object 
       cv::VideoCapture capture; 
       // the callback function to be called  
       // for the processing of each frame 
       void (*process)(cv::Mat&, cv::Mat&); 
       // a bool to determine if the  
       // process callback will be called 
       bool callIt; 
       // Input display window name 
       std::string windowNameInput; 
       // Output display window name 
       std::string windowNameOutput; 
       // delay between each frame processing 
       int delay; 
       // number of processed frames  
       long fnumber; 
       // stop at this frame number 
       long frameToStop; 
       // to stop the processing 
       bool stop; 

The first member variable is the cv::VideoCapture object. The second
attribute is the process function pointer that will point to the callback
function. This function can be specified using the corresponding setter
method:

      // set the callback function that 
      // will be called for each frame 
      void setFrameProcessor(void (*frameProcessingCallback)
                             (cv::Mat&, cv::Mat&)) { 
 
        process= frameProcessingCallback; 
      } 



The following method opens the video file:

      //set the name of the video file 
      bool setInput(std::string filename) { 
 
        fnumber= 0; 
        // In case a resource was already  
        // associated with the VideoCapture instance 
        capture.release(); 
        // Open the video file 
        return capture.open(filename); 
      } 

It is generally interesting to display the frames as they are processed.
Therefore, two methods are used to create the display windows:

      // to display the input frames 
      void displayInput(std::string wn) { 
 
        windowNameInput= wn; 
        cv::namedWindow(windowNameInput); 
      } 
   
      // to display the processed frames 
      void displayOutput(std::string wn) { 
        windowNameOutput= wn; 
        cv::namedWindow(windowNameOutput); 
      } 

The main method, called run, is the one that contains the frame
extraction loop:

    // to grab (and process) the frames of the sequence 
    void run() { 
      // current frame 
      cv::Mat frame; 
      //output frame 
      cv::Mat output; 
 
      // if no capture device has been set 
      if (!isOpened()) 
        return; 
 
        stop= false; 
      while (!isStopped()) { 



   
        // read next frame if any 
        if (!readNextFrame(frame)) 
          break; 
  
        // display input frame 
        if (windowNameInput.length()!=0)  
          cv::imshow(windowNameInput,frame); 
 
         // calling the process function 
        if (callIt) { 
 
          //process the frame 
          process(frame, output); 
          //increment frame number 
          fnumber++; 
 
        } 
        else { 
          // no processing 
          output= frame; 
        } 
 
        // display output frame 
        if (windowNameOutput.length()!=0) 
          cv::imshow(windowNameOutput,output); 
          // introduce a delay 
          if (delay>=0 && cv::waitKey(delay)>=0) 
            stopIt(); 
 
          // check if we should stop 
          if (frameToStop>=0 && getFrameNumber()==frameToStop) 
            stopIt(); 
         } 
     } 
 
    // Stop the processing 
    void stopIt() { 
      stop= true; 
    } 
 
    // Is the process stopped? 
    bool isStopped() { 
      return stop; 
    } 
 



    // Is a capture device opened? 
    bool isOpened() { 
      capture.isOpened(); 
    } 
 
    // set a delay between each frame 
    // 0 means wait at each frame 
    // negative means no delay 
    void setDelay(int d) { 
      delay= d; 
    } 

This method uses a private method that reads the frames:

    // to get the next frame  
    // could be: video file or camera 
    bool readNextFrame(cv::Mat& frame) { 
      return capture.read(frame); 
    } 

The run method proceeds by first calling the read method of the
cv::VideoCapture class. There is then a series of operations that are
executed, but before each of them is invoked, a check is made to
determine whether it has been requested. The input window is displayed
only if an input window name has been specified (using the
displayInput method); the callback function is called only if one has
been specified (using the setFrameProcessor method). The output
window is displayed only if an output window name has been defined
(using displayOutput); a delay is introduced only if one has been
specified (using the setDelay method). Finally, the current frame
number is checked if a stop frame has been defined (using
the stopAtFrameNo method).

One might also wish to simply open and play the video file (without
calling the callback function). Therefore, we have two methods that
specify whether or not we want the callback function to be called:

    // process callback to be called 
    void callProcess() { 
      callIt= true; 
    } 
 



    // do not call process callback 
    void dontCallProcess() { 
      callIt= false; 
    } 

Finally, the class also offers the possibility to stop at a certain frame
number:

    void stopAtFrameNo(long frame) { 
      frameToStop= frame; 
    } 
 
    // return the frame number of the next frame 
    long getFrameNumber() { 
      // get info of from the capture device 
      long fnumber= static_cast<long>
(capture.get(CV_CAP_PROP_POS_FRAMES)); 
      return fnumber;  
    } 

The class also contains a number of getter and setter methods that are
basically just a wrapper over the general set and get methods of the
cv::VideoCapture framework.

There's more...
Our VideoProcessor class is there to facilitate the deployment of a
video-processing module. A few additional refinements can be made to
it.

Processing a sequence of images

Sometimes, the input sequence is made of a series of images that are
individually stored in distinct files. Our class can be easily modified to
accommodate such input. You just need to add a member variable that
will hold a vector of image filenames and its corresponding iterator:

    // vector of image filename to be used as input 
    std::vector<std::string> images; 
    // image vector iterator 
    std::vector<std::string>::const_iterator itImg; 



A new setInput method is used to specify the filenames to be read:

    // set the vector of input images 
    bool setInput(const std::vector<std::string>& imgs) { 
      fnumber= 0; 
      // In case a resource was already  
      // associated with the VideoCapture instance 
      capture.release(); 
 
      // the input will be this vector of images 
      images= imgs; 
      itImg= images.begin(); 
      return true; 
    } 

The isOpened method becomes as follows:

    // Is a capture device opened? 
    bool isOpened() { 
      return capture.isOpened() || !images.empty(); 
    } 

The last method that needs to be modified is the private readNextFrame
method that will read from the video or from the vector of filenames,
depending on the input that has been specified. The test is that if the
vector of image filenames is not empty, then that is because the input is
an image sequence. The call to setInput with a video filename clears
this vector:

    // to get the next frame  
    // could be: video file; camera; vector of images 
    bool readNextFrame(cv::Mat& frame) { 
 
      if (images.size()==0) 
        return capture.read(frame); 
 
      else { 
        if (itImg != images.end()) { 
          frame= cv::imread(*itImg); 
          itImg++; 
          return frame.data != 0; 
        } else 
 
          return false; 



      } 
    } 

Using a frame processor class

In an object-oriented context, it might make more sense to use a frame
processing class instead of a frame processing function. Indeed, a class
would give the programmer much more flexibility in the definition of a
video-processing algorithm. We can, therefore, define an interface that
any class that wishes to be used inside the VideoProcessor will need to
implement:

    // The frame processor interface 
    class FrameProcessor { 
      public: 
      // processing method 
      virtual void process(cv:: Mat &input, cv:: Mat &output)= 
0; 
    }; 

A setter method allows you to input a FrameProcessor instance to the
VideoProcessor framework and assign it to the added FrameProcessor
member variable that is defined as a pointer to a FrameProcessor object:

    // set the instance of the class that  
    // implements the FrameProcessor interface 
    void setFrameProcessor(FrameProcessor* frameProcessorPtr) {  
      // invalidate callback function 
      process= 0; 
       // this is the frame processor instance  
       // that will be called 
       frameProcessor= frameProcessorPtr; 
       callProcess(); 
    } 

When a frame processor class instance is specified, it invalidates any
frame processing function that could have been set previously. The same
obviously applies if a frame processing function is specified instead. The
while loop of the run method is modified to take into account this
modification:

    while (!isStopped()) { 
 



      // read next frame if any 
      if (!readNextFrame(frame)) 
        break; 
 
      // display input frame 
      if (windowNameInput.length()!=0) 
        cv::imshow(windowNameInput,frame); 
 
      //** calling the process function or method ** 
      if (callIt) { 
 
        // process the frame 
        if (process) // if call back function 
          process(frame, output); 
        else if (frameProcessor)  
          // if class interface instance 
          frameProcessor->process(frame,output); 
        // increment frame number 
        fnumber++; 
      } 
      else { 
        output= frame; 
      } 
      // display output frame 
      if (windowNameOutput.length()!=0) 
        cv::imshow(windowNameOutput,output); 
      // introduce a delay 
      if (delay>=0 && cv::waitKey(delay)>=0) 
        stopIt(); 
      // check if we should stop 
      if (frameToStop>=0 && getFrameNumber()==frameToStop) 
        stopIt(); 
    } 

See also
The Tracking feature points in a video recipe of Chapter 13 ,
Tracking Visual Motion, gives you an example of how to use the
FrameProcessor class interface
The GitHub project at https://github.com/asolis/vivaVideo presents a
more sophisticated framework for processing video with
multithreading in OpenCV

https://github.com/asolis/vivaVideo


Writing video sequences
In the previous recipes, we learned how to read a video file and extract
its frames. This recipe will show you how to write frames and, therefore,
create a video file. This will allow us to complete the typical video-
processing chain: reading an input video stream, processing its frames,
and then storing the results in a new video file.

How to do it...
Writing video files in OpenCV is done using the cv::VideoWriter class.
An instance is constructed by specifying the filename, the frame rate at
which the generated video should play, the size of each frame, and
whether or not the video will be created in color:

    writer.open(outputFile,     // filename 
                codec,          // codec to be used  
                framerate,      // frame rate of the video 
                frameSize,      // frame size 
                isColor);       // color video? 

In addition, you must specify the way you want the video data to be
saved. This is the codec argument; this will be discussed at the end of
this recipe.

Once the video file is opened, frames can be added to it by repetitively
calling the write method:

    writer.write(frame);   // add the frame to the video file 

Using the cv::VideoWriter class, our VideoProcessor class introduced
in the previous recipe can easily be expanded in order to give it the
ability to write video files. A simple program that will read a video,
process it, and write the result to a video file would then be written as
follows:

    // Create instance 
    
    VideoProcessor processor; 



 
    // Open video file 
    processor.setInput("bike.avi"); 
    processor.setFrameProcessor(canny); 
    processor.setOutput("bikeOut.avi"); 
    // Start the process 
    processor.run(); 

Proceeding as we did in the preceding recipe, we also want to give the
user the possibility to write the frames as individual images. In our
framework, we adopt a naming convention that consists of a prefix
name followed by a number made of a given number of digits. This
number is automatically incremented as frames are saved. Then, to save
the output result as a series of images, you would swap the preceding
statement with this one:

    processor.setOutput("bikeOut",  //prefix 
                        ".jpg",     // extension 
                        3,          // number of digits 
                        0);         // starting index 

Using the specified number of digits, this call will create the
bikeOut000.jpg, bikeOut001.jpg, and bikeOut002.jpg files, and so on.

How it works...
Let's now describe how to modify our VideoProcessor class in order to
give it the ability to write video files. First, a cv::VideoWriter variable
member must be added to our class (plus a few other attributes):

    class VideoProcessor { 
 
      private: 
 
      // the OpenCV video writer object 
      cv::VideoWriter writer; 
      // output filename 
      std::string outputFile; 
      // current index for output images 
      int currentIndex; 
      // number of digits in output image filename 
      int digits; 



      // extension of output images 
      std::string extension; 

An extra method is used to specify (and open) the output video file:

    // set the output video file 
    // by default the same parameters than  
    // input video will be used 
    bool setOutput(const std::string &filename, int codec=0,           
                   double framerate=0.0, bool isColor=true) { 
 
      outputFile= filename; 
      extension.clear(); 
  
      if (framerate==0.0) 
        framerate= getFrameRate(); // same as input 
 
      char c[4]; 
      // use same codec as input 
      if (codec==0) {  
        codec= getCodec(c); 
      } 
 
      // Open output video 
      return writer.open(outputFile,      // filename 
                         codec,           // codec to be used  
                         framerate,       // frame rate of the 
video 
                         getFrameSize(),  // frame size 
                         isColor);        // color video? 
    } 

A private method, called the writeNextFrame method, handles the frame
writing procedure (in a video file or as a series of images):

    // to write the output frame  
    // could be: video file or images 
    void writeNextFrame(cv::Mat& frame) { 
      if (extension.length()) { // then we write images 
 
        std::stringstream ss; 
        // compose the output filename 
        ss << outputFile << std::setfill('0')  
           << std::setw(digits) << currentIndex++ << extension;  
        cv::imwrite(ss.str(),frame); 



     
      } else { 
        // then write to video file 
        writer.write(frame); 
      } 
    } 

For the case where the output is made of individual image files, we need
an additional setter method:

    // set the output as a series of image files 
    // extension must be ".jpg", ".bmp" 
    bool setOutput(const std::string &filename, // prefix 
                   const std::string &ext,      // image file 
extension 
                   int numberOfDigits=3,        // number of 
digits 
                   int startIndex=0) {          // start index 
 
      // number of digits must be positive 
      if (numberOfDigits<0) 
        return false; 
 
      // filenames and their common extension 
      outputFile= filename; 
      extension= ext; 
 
      // number of digits in the file numbering scheme 
      digits= numberOfDigits; 
      // start numbering at this index 
      currentIndex= startIndex; 
 
      return true; 
    } 

Finally, a new step is then added to the video capture loop of the run
method:

  while (!isStopped()) { 
 
    // read next frame if any 
    if (!readNextFrame(frame)) 
      break; 
 
    // display input frame 



    if (windowNameInput.length()!=0) 
      cv::imshow(windowNameInput,frame); 
 
    // calling the process function or method 
    if (callIt) { 
 
      // process the frame 
      if (process) 
        process(frame, output); 
      else if (frameProcessor) 
        frameProcessor->process(frame,output); 
      // increment frame number 
      fnumber++; 
    }  else { 
      output= frame; 
    } 
 
    //** write output sequence ** 
    if (outputFile.length()!=0) 
      writeNextFrame(output); 
    // display output frame 
    if (windowNameOutput.length()!=0) 
      cv::imshow(windowNameOutput,output); 
    // introduce a delay 
    if (delay>=0 && cv::waitKey(delay)>=0) 
      stopIt(); 
 
    // check if we should stop 
    if (frameToStop>=0 && getFrameNumber()==frameToStop) 
      stopIt(); 
    } 
  } 

There's more...
When a video is written to a file, it is saved using a codec. A codec is a
software module that is capable of encoding and decoding video
streams. The codec defines both the format of the file and the
compression scheme that is used to store the information. Obviously, a
video that has been encoded using a given codec must be decoded with
the same codec. For this reason, four-character codes have been
introduced to uniquely identify codecs. This way, when a software tool
needs to write a video file, it determines the codec to be used by reading



the specified four-character code.

The codec four-character code

As the name suggests, the four-character code is made up of four ASCII
characters that can also be converted into an integer by appending them
together. Using the cv::CAP_PROP_FOURCC flag of the get method of an
opened cv::VideoCapture instance, you can obtain the code of an
opened video file. We can define a method in our VideoProcessor class
to return the four-character code of an input video:

    // get the codec of input video 
    int getCodec(char codec[4]) { 
  
      // undefined for vector of images 
      if (images.size()!=0) return -1; 
      union { // data structure for the 4-char code 
        nt value; 
        char code[4]; 
      } returned; 
 
      // get the code 
      returned.value= static_cast<int>
(capture.get(cv::CAP_PROP_FOURCC)); 
      // get the 4 characters 
      codec[0]= returned.code[0]; 
      codec[1]= returned.code[1]; 
      codec[2]= returned.code[2]; 
      codec[3]= returned.code[3]; 
 
      // return the int value corresponding to the code 
      return returned.value; 
    } 

The get method always returns a double value that is then casted into an
integer. This integer represents the code from which the four characters
can be extracted using a union data structure. If we open our test video
sequence, then we have the following statements:

    char codec[4]; 
    processor.getCodec(codec); 
    std::cout << "Codec: " << codec[0] << codec[1] 
              << codec[2] << codec[3] << std::endl; 



From the preceding statements, we obtain, for our example, the
following:

    Codec : XVID 

When a video file is written, the codec must be specified using its four-
character code. This is the second parameter in the open method of the
cv::VideoWriter class. You can use, for example, the same one as the
input video (this is the default option in our setOutput method). You can
also pass the value -1 and the method will pop up a window that will ask
you to select one codec from the list of available codecs. The list you
will see in this window corresponds to the list of installed codecs on
your machine. The code of the selected codec is then automatically sent
to the open method.

See also
The https://www.xvid.com/ website offers you an open source video
codec library based on the MPEG-4 standard for video
compression. Xvid also has a competitor called DivX, which offers
proprietary but free codec and software tools.

https://www.xvid.com/


Extracting the foreground objects
in a video
This chapter is about reading, writing, and processing video sequences.
The objective is to be able to analyze a complete video sequence. As an
example, in this recipe, you will learn how to perform temporal analysis
of a sequence in order to extract the moving foreground objects. Indeed,
when a fixed camera observes a scene, the background remains mostly
unchanged. In this case, the interesting elements are the moving objects
that evolve inside this scene. In order to extract these foreground
objects, we need to build a model of the background, and then compare
this model with a current frame in order to detect any foreground
objects. This is what we will do in this recipe. Foreground extraction is a
fundamental step in intelligent surveillance applications.

If we had an image of the background of the scene (that is, a frame that
contains no foreground objects) at our disposal, then it would be easy to
extract the foreground of a current frame through a simple image
difference:

    // compute difference between current image and background 
    cv::absdiff(backgroundImage,currentImage,foreground); 

Each pixel for which this difference is high enough would then be
declared as a foreground pixel. However, most of the time, this
background image is not readily available. Indeed, it could be difficult to
guarantee that no foreground objects are present in a given image, and in
busy scenes, such situations might rarely occur. Moreover, the
background scene often evolves over time because, for instance, the
lighting condition changes (for example, from sunrise to sunset) or
because new objects are added or removed from the background.

Therefore, it is necessary to dynamically build a model of the
background scene. This can be done by observing the scene for a period
of time. If we assume that most often, the background is visible at each



pixel location, then it could be a good strategy to simply compute the
average of all of the observations. However, this is not feasible for a
number of reasons. First, this would require a large number of images to
be stored before computing the background. Second, while we are
accumulating images to compute our average image, no foreground
extraction is done. This solution also raises the problem of when and
how many images should be accumulated to compute an acceptable
background model. In addition, the images where a given pixel is
observing a foreground object would have an impact on the computation
of the average background.

A better strategy is to dynamically build the background model by
regularly updating it. This can be accomplished by computing what is
called a running average (also called moving average). This is a way
to compute the average value of a temporal signal that takes into
account the latest received values. If pt is the pixel value at a given time
t and μt-1 is the current average value, then this average is updated
using the following formula:

The α parameter is called the learning rate, and it defines the influence
of the current value over the currently estimated average. The larger this
value is, the faster the running average will adapt to changes in the
observed values but, at the same time, slowly moving objects will tend
to disappear in the background when the learning rate is set too high. In
fact, the appropriate learning rate largely depends on the dynamic of the
scene. To build a background model, one just has to compute a running
average for every pixel of the incoming frames. The decision to declare
a foreground pixel is then simply based on the difference between the
current image and the background model.



How to do it...
Let's build a class that will learn a background model using a moving
average and that will extract foreground objects by subtraction. The
required attributes are as follows:

    class BGFGSegmentor : public FrameProcessor { 
      cv::Mat gray;          // current gray-level image 
      cv::Mat background;    // accumulated background 
      cv::Mat backImage;     // current background image 
      cv::Mat foreground;    // foreground image 
      // learning rate in background accumulation 
      double learningRate; 
      int threshold;         // threshold for foreground 
extraction 

The main process consists of comparing the current frame with the
background model and then updating this model:

    // processing method 
    void process(cv:: Mat &frame, cv:: Mat &output) { 
      // convert to gray-level image 
      cv::cvtColor(frame, gray, cv::COLOR_BGR2GRAY); 
      // initialize background to 1st frame 
      if (background.empty()) 
        gray.convertTo(background, CV_32F); 
      // convert background to 8U 
      background.convertTo(backImage,CV_8U); 
 
      // compute difference between image and background 
      cv::absdiff(backImage,gray,foreground); 
      // apply threshold to foreground image         
      cv::threshold(foreground,output,threshold, 
                    255,cv::THRESH_BINARY_INV); 
 
      // accumulate background 
      cv::accumulateWeighted(gray, background,  
                             // alpha*gray + (1-
alpha)*background 
                             learningRate,  // alpha 
                             output);       // mask 
    } 

Using our video-processing framework, the foreground extraction



program will be built as follows:

    int main() { 
      // Create video procesor instance 
      VideoProcessor processor; 
   
      // Create background/foreground segmentor 
       BGFGSegmentor segmentor; 
       segmentor.setThreshold(25); 
 
      // Open video file 
      processor.setInput("bike.avi"); 
 
      // Set frame processor 
      processor.setFrameProcessor(&segmentor); 
 
      // Declare a window to display the video 
      processor.displayOutput("Extracted Foreground"); 
 
      // Play the video at the original frame rate 
      processor.setDelay(1000./processor.getFrameRate()); 
 
      // Start the process 
      processor.run(); 
    } 

One of the resulting binary foreground images that will be displayed is as
follows:



How it works...
Computing the running average of an image is easily accomplished
through the cv::accumulateWeighted function that applies the running
average formula to each pixel of the image. Note that the resulting
image must be a floating point image. This is why we had to convert the
background model into a background image before comparing it with the
current frame. A simple thresholded absolute difference (computed by
cv::absdiff followed by cv::threshold) extracts the foreground image.
Note that we then used the foreground image as a mask to
cv::accumulateWeighted in order to avoid updating pixels declared as
foreground. This works because our foreground image is defined as
being false (that is, 0) at foreground pixels (which also explains why the
foreground objects are displayed as black pixels in the resulting image).

Finally, it should be noted that, for simplicity, the background model that
is built by our program is based on the gray-level version of the
extracted frames. Maintaining a color background would require the



computation of a running average in some color space. As it is often the
case with parametric vision algorithms, the main difficulty in the
presented approach is to determine the appropriate value for the
threshold that would give good results for a given video.

There's more...
The preceding, simple method to extract foreground objects in a scene
works well for simple scenes that show a relatively stable background.
However, in many situations, the background scene might fluctuate in
certain areas between different values, thus causing frequent false
foreground detections. These might be due to, for example, a moving
background object (for example, tree leaves) or a glaring effect (for
example, on the surface of water). Casted shadows also pose a problem
since they are often detected as part of a moving object. In order to cope
with these problems, more sophisticated background modeling methods
have been introduced.

The Mixture of Gaussian method

One of these algorithms is the Mixture of Gaussian method. It proceeds
in a way that is similar to the method presented in this recipe, but adds a
number of improvements.

First, the method maintains more than one model per pixel (that is, more
than one running average). This way, if a background pixel fluctuates
between, let's say, two values, two running averages are then stored. A
new pixel value will be declared as the foreground only if it does not
belong to any of the most frequently observed models. The number of
models used is a parameter of the method, and a typical value is 5.

Second, not only is the running average maintained for each model, but
also for the running variance. This is computed as follows:



These computed averages and variances are used to build a Gaussian
model from which the probability of a given pixel value belonging to the
background can be estimated. This makes it easier to determine an
appropriate threshold since it is now expressed as a probability rather
than an absolute difference. Consequently, in areas where the
background values have larger fluctuations, a greater difference will be
required to declare a foreground object.

Finally, this is an adaptive model, that is when a given Gaussian model is
not hit sufficiently often, it is excluded from being part of the
background model. Reciprocally, when a pixel value is found to be
outside the currently maintained background models (that is, it is a
foreground pixel), a new Gaussian model is created. If, in the future, this
new model frequently receives pixels, then it becomes associated with
the background.

This more sophisticated algorithm is obviously more complex to
implement than our simple background/foreground segmentor.
Fortunately, an OpenCV implementation exists, called
cv::bgsegm::createBackgroundSubtractorMOG, and is defined as a
subclass of the more general cv::BackgroundSubtractor class. When
used with its default parameter, this class is very easy to use:

    int main(){ 
      // Open the video file 
      cv::VideoCapture capture("bike.avi"); 
      // check if video successfully opened 
      if (!capture.isOpened()) 
        return 0; 
 
      // current video frame 
      cv::Mat frame; 



      // foreground binary image 
      cv::Mat foreground; 
      // background image 
      cv::Mat background; 
      cv::namedWindow("Extracted Foreground"); 
 
      // The Mixture of Gaussian object 
      // used with all default parameters 
      cv::Ptr<cv::BackgroundSubtractor> ptrMOG =
                      
cv::bgsegm::createBackgroundSubtractorMOG(); 
      bool stop(false); 
      // for all frames in video 
      while (!stop) { 
        // read next frame if any 
        if (!capture.read(frame)) 
          break; 
 
        // update the background 
        // and return the foreground 
         ptrMOG->apply(frame,foreground,0.01); 
 
        // Complement the image 
        cv::threshold(foreground,foreground,128, 
                      255,cv::THRESH_BINARY_INV); 
        //show foreground and background 
        cv::imshow("Extracted Foreground",foreground); 
 
        // introduce a delay 
        // or press key to stop 
        if (cv::waitKey(10)>=0) 
          stop= true; 
      } 
    } 

As you can see, it is just a matter of creating the class instance and
calling the method that simultaneously updates the background and
returns the foreground image (the extra parameter being the learning
rate). Also note that the background model is computed in color here.
The method implemented in OpenCV also includes a mechanism to
reject shadows by checking whether the observed pixel variation is
simply caused by a local change in brightness (if so, then it is probably
due to a shadow) or whether it also includes some change in
chromaticity.



A second implementation is also available and is simply called
cv::BackgroundSubtractorMOG2. One of the improvements is that the
number of appropriate Gaussian models per pixel to be used is now
determined dynamically. You can use this in place of the previous one in
the preceding example. You should run these different methods on a
number of videos in order to appreciate their respective performances.
In general, you will observe that cv::BackgroundSubtractorMOG2 is
much faster.

See also
The article by C. Stauffer and W.E.L. Grimson, Adaptive
Background Mixture Models for Real-Time Tracking, in Conf. on
Computer Vision and Pattern Recognition, 1999, gives you a more
complete description of the Mixture of Gaussian algorithm



Chapter 13. Tracking Visual
Motion
In this chapter, we will cover the following recipes:

Tracing feature points in a video
Estimating the optical flow
Tracking an object in a video

Introduction
Video sequences are interesting because they show scenes and objects in
motion. The preceding chapter introduced the tools for reading,
processing, and saving videos. In this chapter, we will look at different
algorithms that track the visible motion in a sequence of images. This
visible or apparent motion can be caused by objects that move in
different directions and at various speeds or by the motion of the camera
(or a combination of both).

Tracking apparent motion is of utmost importance in many applications.
It allows you to follow specific objects while they are moving in order to
estimate their speed and determine where they are going. It also permits
you to stabilize videos taken from handheld cameras by removing or
reducing the amplitude of camera jitters. Motion estimation is also used
in video coding to compress a video sequence in order to facilitate its
transmission or storage. This chapter will present a few algorithms that
track the motion in an image sequence, and as we will see, this tracking
can be achieved either sparsely (that is, at few image locations, this is
sparse motion) or densely (at every pixel of an image, this is dense
motion).



Tracing feature points in a video
We learned in previous chapters that analyzing an image through some
of its most distinctive points can lead to effective and efficient computer
vision algorithms. This is also true for image sequences in which the
motion of some interest points can be used to understand how the
different elements of a captured scene move. In this recipe, you will
learn how to perform a temporal analysis of a sequence by tracking
feature points as they move from frame to frame.

How to do it...
To start the tracking process, the first thing to do is to detect the feature
points in an initial frame. You then try to track these points in the next
frame. Obviously, since we are dealing with a video sequence, there is a
good chance that the object, on which the feature points are found, has
moved (this motion can also be due to camera movement). Therefore,
you must search around a point's previous location in order to find its
new location in the next frame. This is what accomplishes the
cv::calcOpticalFlowPyrLK function. You input two consecutive frames
and a vector of feature points in the first image; the function then
returns a vector of new point locations. To track the points over a
complete sequence, you repeat this process from frame to frame. Note
that as you follow the points across the sequence, you will unavoidably
lose track of some of them such that the number of tracked feature
points will gradually reduce. Therefore, it could be a good idea to detect
new features from time to time.

We will now take advantage of the video-processing framework we
defined in Chapter 12 , Processing Video Sequences, and we will define
a class that implements the FrameProcessor interface introduced in the
Processing the video frames recipe of this chapter. The data attributes
of this class include the variables that are required to perform both the
detection of feature points and their tracking:

    class FeatureTracker : public FrameProcessor { 



 
      cv::Mat gray;      // current gray-level image 
      cv::Mat gray_prev; // previous gray-level image 
      // tracked features from 0->1 
      std::vector<cv::Point2f> points[2]; 
      // initial position of tracked points 
      std::vector<cv::Point2f> initial; 
      std::vector<cv::Point2f> features;  // detected features 
      int max_count;               // maximum number of 
features to detect 
      double qlevel;               // quality level for feature 
detection 
      double minDist;              // min distance between two 
points 
      std::vector<uchar> status;   // status of tracked 
features 
      std::vector<float> err;      // error in tracking 
 
      public: 
 
        FeatureTracker() : max_count(500), qlevel(0.01), 
minDist(10.) {} 

Next, we define the process method that will be called for each frame
of the sequence. Basically, we need to proceed as follows. First, the
feature points are detected if necessary. Next, these points are tracked.
You reject the points that you cannot track or you no longer want to
track. You are now ready to handle the successfully tracked points.
Finally, the current frame and its points become the previous frame and
points for the next iteration. Here is how to do this:

    void process(cv:: Mat &frame, cv:: Mat &output) { 
 
      // convert to gray-level image 
      cv::cvtColor(frame, gray, CV_BGR2GRAY);  
      frame.copyTo(output); 
 
      // 1. if new feature points must be added 
      if(addNewPoints()){ 
        // detect feature points 
        detectFeaturePoints(); 
        // add the detected features to  
        // the currently tracked features 
        points[0].insert(points[0].end(),  



                         features.begin(), features.end()); 
        initial.insert(initial.end(),  
                       features.begin(), features.end()); 
      } 
 
      // for first image of the sequence 
      if(gray_prev.empty()) 
        gray.copyTo(gray_prev); 
 
      // 2. track features 
      cv::calcOpticalFlowPyrLK( 
                gray_prev, gray, // 2 consecutive images 
                points[0],       // input point positions in 
first image 
                points[1],       // output point positions in 
the 2nd image 
                status,          // tracking success 
                err);            // tracking error 
 
      // 3. loop over the tracked points to reject some 
      int k=0; 
      for( int i= 0; i < points[1].size(); i++ ) { 
 
        // do we keep this point? 
        if (acceptTrackedPoint(i)) { 
          // keep this point in vector 
          initial[k]= initial[i]; 
          points[1][k++] = points[1][i]; 
        } 
      } 
 
      // eliminate unsuccesful points 
      points[1].resize(k); 
      initial.resize(k); 
 
      // 4. handle the accepted tracked points 
      handleTrackedPoints(frame, output); 
 
      // 5. current points and image become previous ones 
      std::swap(points[1], points[0]); 
      cv::swap(gray_prev, gray); 
    } 

This method makes use of four utility methods. It should be easy for you
to change any of these methods in order to define a new behavior for



your own tracker. The first of these methods detects the feature points.
Note that we have already discussed the cv::goodFeatureToTrack
function in the first recipe of Chapter 8 , Detecting Interest Points:

    // feature point detection 
    void detectFeaturePoints() { 
 
      // detect the features 
      cv::goodFeaturesToTrack(gray,  // the image 
                        features,    // the output detected 
features 
                        max_count,   // the maximum number of 
features  
                        qlevel,      // quality level 
                        minDist);    // min distance between 
two features 
    } 

The second method determines whether new feature points should be
detected. This will happen when a negligible number of tracked points
remain:

    // determine if new points should be added 
    bool addNewPoints() { 
 
      // if too few points 
      return points[0].size()<=10; 
    } 

The third method rejects some of the tracked points based on a criteria
defined by the application. Here, we decided to reject the points that do
not move (in addition to those that cannot be tracked by the
cv::calcOpticalFlowPyrLK function). We consider that non-moving
points belong to the background scene and are therefore uninteresting:

    //determine which tracked point should be accepted 
    bool acceptTrackedPoint(int i) { 
 
      return status[i] &&  //status is false if unable to track 
point i 
        // if point has moved 
        (abs(points[0][i].x-points[1][i].x)+ 
            (abs(points[0][i].y-points[1][i].y))>2); 



    } 

Finally, the fourth method handles the tracked feature points by drawing
all the tracked points with a line that joins them to their initial position
(that is, the position where they were detected the first time) on the
current frame:

    // handle the currently tracked points 
    void handleTrackedPoints(cv:: Mat &frame, cv:: Mat &output) 
{ 
 
      // for all tracked points 
      for (int i= 0; i < points[1].size(); i++ ) { 
 
        // draw line and circle 
        cv::line(output, initial[i],  // initial position  
                 points[1][i],        // new position  
                 cv::Scalar(255,255,255)); 
        cv::circle(output, points[1][i], 3,       
                   cv::Scalar(255,255,255),-1); 
      } 
    } 

A simple main function to track the feature points in a video sequence
would then be written as follows:

    int main() { 
      // Create video procesor instance 
      VideoProcessor processor; 
  
      // Create feature tracker instance 
      FeatureTracker tracker; 
      // Open video file 
      processor.setInput("bike.avi"); 
 
      // set frame processor 
      processor.setFrameProcessor(&tracker); 
 
      // Declare a window to display the video 
      processor.displayOutput("Tracked Features"); 
 
      // Play the video at the original frame rate 
      processor.setDelay(1000./processor.getFrameRate()); 
 
      // Start the process 



      processor.run(); 
    } 

The resulting program will show you the evolution of the moving
tracked features over time. Here are, for example, two such frames at
two different instants. In this video, the camera is fixed. The young
cyclist is therefore the only moving object. Here is the result that is
obtained after a few frames have been processed:

A few seconds later, we obtain the following frame:



How it works...
To track the feature points from frame to frame, we must locate the new
position of a feature point in the subsequent frame. If we assume that
the intensity of the feature point does not change from one frame to the
next one, we are looking for a displacement (u,v) as follows:

Here, It and It+1 are the current frame and the one at the next instant,
respectively. This constant intensity assumption generally holds for small
displacement in images that are taken at two nearby instants. We can
then use the Taylor expansion in order to approximate this equation by
an equation that involves the image derivatives:



This latter equation leads us to another equation (as a consequence of
the constant intensity assumption that cancels the two intensity terms):

This constraint is the fundamental optical flow constraint equation and
is known as the brightness constancy equation.

This constraint is exploited by the so-called Lukas-Kanade feature
tracking algorithm. In addition to using this constraint, the Lukas-
Kanade algorithm also makes an assumption that the displacement of all
the points in the neighborhood of the feature point is the same. We can
therefore impose the optical flow constraint on all these points with a
unique (u,v) unknown displacement. This gives us more equations than
the number of unknowns (two), and therefore, we can solve this system
of equations in a mean-square sense. In practice, it is solved iteratively,
and the OpenCV implementation also offers us the possibility to perform
this estimation at a different resolution in order to make the search more
efficient and more tolerant to a larger displacement. By default, the
number of image levels is 3 and the window size is 15. These parameters
can obviously be changed. You can also specify the termination criteria,
which define the conditions that stop the iterative search. The sixth
parameter of cv::calcOpticalFlowPyrLK contains the residual mean-



square error that can be used to assess the quality of the tracking. The
fifth parameter contains binary flags that tell us whether tracking the
corresponding point was considered successful or not.

The preceding description represents the basic principles behind the
Lukas-Kanade tracker. The current implementation contains other
optimizations and improvements that make the algorithm more efficient
in the computation of the displacement of a large number of feature
points.

See also
Chapter 8 , Detecting Interest Points, where there is a discussion on
feature point detection
The Tracking an object in a video recipe of this chapter uses feature
point tracking in order to track objects
The classic article by B. Lucas and T. Kanade, An Iterative Image
Registration Technique with an Application to Stereo Vision, at the
Int. Joint Conference in Artificial Intelligence, pp. 674-679, 1981,
describes the original feature point tracking algorithm
The article by J. Shi and C. Tomasi, Good Features to Track, at the
IEEE Conference on Computer Vision and Pattern Recognition,
pp. 593-600, 1994, describes an improved version of the original
feature point tracking algorithm



Estimating the optical flow
When a scene is observed by a camera, the observed brightness pattern
is projected on the image sensor and thus forms an image. In a video
sequence, we are often interested in capturing the motion pattern, that is
the projection of the 3D motion of the different scene elements on an
image plane. This image of projected 3D motion vectors is called the
motion field. However, it is not possible to directly measure the 3D
motion of scene points from a camera sensor. All we observe is a
brightness pattern that is in motion from frame to frame. This apparent
motion of the brightness pattern is called the optical flow. One might
think that the motion field and optical flow should be equal, but this is
not always true. An obvious case would be the observation of a uniform
object; for example, if a camera moves in front of a white wall, then no
optical flow is generated. 

Another classical example is the illusion produced by a rotating barber
pole:

In this case, the motion field should show motion vectors in the
horizontal direction as the vertical cylinder rotates around its main axis.
However, observers perceive this motion as red and blue strips moving
up and this is what the optical flow will show. In spite of these
differences, the optical flow is considered to be a valid approximation of



the motion field. This recipe will explain how the optical flow of an
image sequence can be estimated.

Getting ready
Estimating the optical flow means quantifying the apparent motion of
the brightness pattern in an image sequence. So let's consider one frame
of the video at one given instant. If we look at one particular pixel (x,y)
on the current frame, we would like to know where this point is moving
in the subsequent frames. That is to say that the coordinates of this point
are moving over time-a fact that can be expressed as (x(t),y(t))-and
our goal is to estimate the velocity of this point (dx/dt,dy/dt). The
brightness of this particular point at time t can be obtained by looking at
the corresponding frame of the sequence, that is, I(x(t),y(t),t).

From our image brightness constancy assumption, we can write that
the brightness of this point does not vary with respect to time:

The chain rule allows us to write the following:



This equation is known as the brightness constancy equation and it
relates the optical flow components (the derivatives of x and y with
respect to time) with the image derivatives. This is exactly the equation
we derived in the previous recipe; we simply demonstrated it differently.

This single equation (composed of two unknowns) is however
insufficient to compute the optical flow at a pixel location. We therefore
need to add an additional constraint. A common choice is to assume the
smoothness of the optical flow, which means that the neighboring optical
flow vectors should be similar. Any departure from this assumption
should therefore be penalized. One particular formulation for this
constraint is based on the Laplacian of the optical flow:

The objective is therefore to find the optical flow field that minimizes
both the deviations from the brightness constancy equation and the
Laplacian of the flow vectors.

How to do it...
Several approaches have been proposed to solve the dense optical flow
estimation problem, and OpenCV implements a few of them. Let's use
the cv::DualTVL1OpticalFlow class that is built as a subclass of the
generic cv::Algorithm base class. Following the implemented pattern,
the first thing to do is to create an instance of this class and obtain a
pointer to it:

    //Create the optical flow algorithm 
    cv::Ptr<cv::DualTVL1OpticalFlow> tvl1 = 
cv::createOptFlow_DualTVL1(); 

Since the object we just created is in a ready-to-use state, we simply call



the method that calculates an optical flow field between the two frames:

    cv::Mat oflow;   // image of 2D flow vectors 
    //compute optical flow between frame1 and frame2 
    tvl1->calc(frame1, frame2, oflow); 

The result is an image of 2D vectors (cv::Point) that represents the
displacement of each pixel between the two frames. In order to display
the result, we must therefore show these vectors. This is why we created
a function that generates an image map for an optical flow field. To
control the visibility of the vectors, we used two parameters. The first
one is a stride value that is defined such that only one vector over a
certain number of pixels will be displayed. This stride makes space for
the display of the vectors. The second parameter is a scale factor that
extends the vector length to make it more apparent. Each drawn optical
flow vector is then a simple line that ends with a plain circle to
symbolize the tip of an arrow. Our mapping function is therefore as
follows:

    // Drawing optical flow vectors on an image 
    void drawOpticalFlow(const cv::Mat& oflow,  // the optical 
flow 
          cv::Mat& flowImage,      // the produced image 
          int stride,              // the stride for displaying 
the vectors 
          float scale,             // multiplying factor for 
the vectors 
          const cv::Scalar& color) // the color of the vectors 
    { 
      // create the image if required 
      if (flowImage.size() != oflow.size()) { 
        flowImage.create(oflow.size(), CV_8UC3); 
        flowImage = cv::Vec3i(255,255,255); 
      } 
 
      //for all vectors using stride as a step 
      for (int y = 0; y < oflow.rows; y += stride) 
        for (int x = 0; x < oflow.cols; x += stride) { 
          //gets the vector 
          cv::Point2f vector = oflow.at< cv::Point2f>(y, x); 
          // draw the line      
          cv::line(flowImage, cv::Point(x,y), 
                   cv::Point(static_cast<int>(x + 



scale*vector.x + 0.5),             
                             static_cast<int>(y + 
scale*vector.y + 0.5)),
                   color); 
          // draw the arrow tip 
          cv::circle(flowImage, 
                     cv::Point(static_cast<int>(x + 
scale*vector.x + 0.5),  
                               static_cast<int>(y + 
scale*vector.y + 0.5)),
                     1, color, -1); 
        } 
    } 

Consider the following two frames:

If these frames are used, then the estimated optical flow field can be
visualized by calling our drawing function:

    // Draw the optical flow image 
    cv::Mat flowImage; 
    drawOpticalFlow(oflow,                // input flow vectors  
                    flowImage,            // image to be 
generated 
                    8,                    // display vectors 
every 8 pixels 
                    2,                    // multiply size of 
vectors by 2 
                    cv::Scalar(0, 0, 0)); // vector color 



The result is as follows:

How it works...
We explained in the first section of this recipe that an optical flow field
can be estimated by minimizing a function that combines the brightness
constancy constraint and a smoothness function. The equations we
presented then constitute the classical formulation of the problem, and
this one has been improved in many ways.

The method we used in the previous section is known as the Dual TV
L1 method. It has two main ingredients. The first one is the use of a
smoothing constraint that aims at minimizing the absolute value of the
optical flow gradient (instead of the square of it). This choice reduces
the impact of the smoothing term, especially at regions of discontinuity
where, for example, the optical flow vectors of a moving object are
quite different from the ones of its background. The second ingredient is
the use of a first-order Taylor approximation; this linearizes the
formulation of the brightness constancy constraint. We will not enter



into the details of this formulation here; it is suffice to say that this
linearization facilitates the iterative estimation of the optical flow field.
However, since the linear approximation is only valid for small
displacements, the method requires a coarse-to-fine estimation scheme.

In this recipe, we used this method with its default parameters. A
number of setters and getters methods allow you to modify the ones
which can have an impact on the quality of the solution and on the
speed of the computation. For example, one can modify the number of
scales used in the pyramidal estimation or specify a more or less strict
stopping criterion to be adopted during each iterative estimation step.
Another important parameter is the weight associated with the
brightness constancy constraint versus the smoothness constraint. For
example, if we reduce the importance given to brightness constancy by
two, we then obtain a smoother optical flow field:

    // compute a smoother optical flow between 2 frames 
    tvl1->setLambda(0.075); 
    tvl1->calc(frame1, frame2, oflow); 



See also
The article by B.K.P. Horn and B.G. Schunck, Determining optical
flow, in Artificial Intelligence, 1981, is the classical reference on
optical flow estimation
The article by C. Zach, T. Pock, and H. Bischof, A duality based
approach for real time tv-l 1 optical flow, at IEEE conference
on Computer Vision and Pattern Recognition 2007, describes the
details of the Dual TV-L1 method



Tracking an object in a video
In the previous two recipes, we learned how to track the motion of
points and pixels in an image sequence. In many applications, however,
the requirement is rather to track a specific moving object in a video. An
object of interest is first identified and then it must be followed over a
long sequence. This is challenging because as it evolves in the scene, the
image of this object will undergo many changes in appearance due to
viewpoint and illumination variations, non-rigid motion, occlusion, and
so on.

This recipe presents some of the object-tracking algorithms implemented
in the OpenCV library. These implementations are based on a common
framework, which facilitates the substitution of one method by another.
Contributors have also made available a number of new methods. Note
that, we have already presented a solution to the object-tracking
problem in the Counting pixels with integral images recipe in Chapter 4
, Counting the Pixels with Histograms; this one was based on the use of
histograms computed through integral images.

How to do it...
The visual object-tracking problem generally assumes that no prior
knowledge about the objects to be tracked is available. Tracking is
therefore initiated by identifying the object in a frame, and tracking must
start at this point. The initial identification of the object is achieved by
specifying a bounding box inside which the target is inscribed. The
objective of the tracker module is then to reidentify this object in a
subsequent frame.

The cv::Tracker class of OpenCV that defines the object-tracking
framework has therefore, two main methods. The first one is the init
method used to define the initial target bounding box. The second one is
the update method that outputs a new bounding box, given a new frame.
Both the methods accept a frame (a cv::Mat instance) and a bounding
box (a cv::Rect2D instance) as arguments; in one case, the bounding



box is an input, while for the second method, the bounding box is an
output parameter.

In order to test one of the proposed object tracker algorithms, we use the
video-processing framework that has been presented in the previous
chapter. In particular, we define a frame-processing subclass that will be
called by our VideoProcessor class when each frame of the image
sequence is received. This subclass has the following attributes:

    class VisualTracker : public FrameProcessor { 
 
      cv::Ptr<cv::Tracker> tracker; 
      cv::Rect2d box; 
      bool reset; 
 
      public: 
      // constructor specifying the tracker to be used 
      VisualTracker(cv::Ptr<cv::Tracker> tracker) :   
                    reset(true), tracker(tracker) {} 

The reset attribute is set to true whenever the tracker has been
reinitiated through the specification of a new target's bounding box. It is
the setBoundingBox method that is used to store a new object position:

   // set the bounding box to initiate tracking 
   void setBoundingBox(const cv::Rect2d& bb) { 
      box = bb; 
      reset = true; 
   } 

The callback method used to process each frame then simply calls the
appropriate method of the tracker and draws the new computed
bounding box on the frame to be displayed:

    // callback processing method 
    void process(cv:: Mat &frame, cv:: Mat &output) { 
 
      if (reset) { // new tracking session 
        reset = false; 
        tracker->init(frame, box); 
 
      } else { 
        // update the target's position 



        tracker->update(frame, box); 
      } 
 
      // draw bounding box on current frame 
      frame.copyTo(output); 
      cv::rectangle(output, box, cv::Scalar(255, 255, 255), 2);  
    } 

To demonstrate how an object can be tracked using the VideoProcessor
and FrameProcessor instances, we use the Median Flow tracker
defined in OpenCV:

    int main(){ 
      // Create video procesor instance 
      VideoProcessor processor; 
 
      // generate the filename 
      std::vector<std::string> imgs; 
      std::string prefix = "goose/goose"; 
      std::string ext = ".bmp"; 
 
      // Add the image names to be used for tracking 
      for (long i = 130; i < 317; i++) { 
 
        std::string name(prefix); 
        std::ostringstream ss; ss << std::setfill('0') <<  
                 std::setw(3) << i; name += ss.str(); 
        name += ext; 
        imgs.push_back(name); 
      } 
 
      // Create feature tracker instance 
      VisualTracker 
tracker(cv::TrackerMedianFlow::createTracker()); 
 
      // Open video file 
      processor.setInput(imgs); 
 
      // set frame processor 
      processor.setFrameProcessor(&tracker); 
 
      // Declare a window to display the video 
      processor.displayOutput("Tracked object"); 
 
      // Define the frame rate for display 



      processor.setDelay(50); 
 
      // Specify the original target position 
      tracker.setBoundingBox(cv::Rect(290,100,65,40)); 
 
      // Start the tracking 
      processor.run(); 
    } 

The first bounding box identifies one goose in our test image sequence.
This one is then automatically tracked in the subsequent frames:

Unfortunately, as the sequence progresses, the tracker will unavoidably
make errors. The accumulation of these small errors will cause the
tracker to slowly drift from the real target position. Here is, for example,
the estimated position of our target after 130 frames have been
processed:



Eventually, the tracker will lose track of the object. The ability of a
tracker to follow an object over a long period of time is the most
important criteria that characterizes the performance of an object
tracker.

How it works...
In this recipe, we showed how the generic cv::Tracker class can be
used to track an object in an image sequence. We selected the Median
Flow tracker algorithm to illustrate the tracking result. This is a simple
but effective method to track a textured object as long as its motion is
not too rapid and it is not too severely occluded.

The Median Flow tracker is based on feature point tracking. It first starts
by defining a grid of points over the object to be tracked. One could
have instead detected interest points on the object using, for instance,
the FAST operator presented in Chapter 8 , Detecting Interest Points.
However, using points at predefined locations presents a number of
advantages. It saves time by avoiding the computation of interest points.
It guarantees that a sufficient number of points will be available for



tracking. It also makes sure that these points will be well distributed over
the whole object. The Median Flow implementation uses, by default, a
grid of 10x10 points:

The next step is to use the Lukas-Kanade feature-tracking algorithm
presented in the first recipe of this chapter, Tracing feature points in a
video. Each point of the grid is then tracked over the next frame:



The Median Flow algorithm then estimates the errors made when
tracking these points. These errors can be estimated, for example, by
computing the sum of absolute pixel difference in a window around the
point at its initial and tracked position. This is the type of error that is
conveniently computed and returned by the cv::calcOpticalFlowPyrLK
function. Another error measure proposed by the Median Flow
algorithm is to use the so-called forward-backward error. After the
points have been tracked between a frame and the next one, these points
at their new position are backward-tracked to check whether they will
return to their original position in the initial image. The difference
between the thus obtained forward-backward position and the initial one
is the error in tracking.

Once the tracking error of each point has been computed, only 50
percent of the points having the smallest error are considered. This
group is used to compute the new position of the bounding box in the
next image. Each of these points votes for a displacement value, and the
median of these possible displacements is retained. For the change in
scale, the points are considered in pairs. The ratio of the distance
between the two points in the initial frame and the next one is estimated.



Again, it is the median of these scales that is finally applied.

The Median Tracker is one of many other visual object trackers based
on feature point tracking. Another family of solutions is the one that is
based on template matching, a concept we discussed in the Matching
local templates recipe in Chapter 9 , Describing and Matching Interest
Points. A good representative of these kinds of approaches is the
Kernelized Correlation Filter (KCF) algorithm, implemented as the
cv::TrackerKCF class in OpenCV:

     VisualTracker tracker(cv::TrackerKCF::createTracker()); 

Basically, this one uses the target's bounding box as a template to search
for the new object position in the next view. This is normally computed
through a simple correlation, but KCF uses a special trick based on the
Fourier transform that we briefly mentioned in the introduction of
Chapter 6 , Filtering the Images. Without entering into any details, the
signal-processing theory tells us that correlating a template over an
image corresponds to simple image multiplication in the frequency
domain. This considerably speeds up the identification of the matching
window in the next frame and makes KCF one of the fastest and robust
trackers. As an example, here is the position of the bounding box after a
tracking of 130 frames using KCF:



See also
The article by Z. Kalal, K. Mikolajczyk, and J. Matas, Forward-
backward error: Automatic detection of tracking failures, in Int.
Conf. on Pattern Recognition, 2010, describes the Median Flow
algorithm
The article by Z. Kalal, K. Mikolajczyk, and J. Matas, Tracking-
learning-detection, in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol 34, no 7, 2012, is an advanced tracking
method that uses the Median Flow algorithm
The article by J.F. Henriques, R. Caseiro, P. Martins, J. Batista,
High-Speed Tracking with Kernelized Correlation Filters, in IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol 37,
no 3, 2014, describes the KCF tracker algorithm



Chapter 14. Learning from
Examples
In this chapter, we will cover the following recipes:

Recognizing faces using nearest neighbors of local binary patterns
Finding objects and faces with a cascade of Haar features
Detecting objects and people with Support Vector Machines and
histograms of oriented gradients

Introduction
Machine learning is nowadays, very often used to solve difficult
machine vision problems. In fact, it is a rich field of research
encompassing many important concepts that would deserve a complete
cookbook by itself. This chapter surveys some of the main machine
learning techniques and explains how these can be deployed in
computer vision systems using OpenCV.

At the core of machine learning is the development of computer systems
that can learn how to react to data inputs by themselves. Instead of
being explicitly programmed, machine learning systems automatically
adapt and evolve when examples of desired behaviors are presented to
them. Once a successful training phase is completed, it is expected that
the trained system will output the correct response to new unseen
queries.

Machine learning can solve many types of problems; our focus here will
be on classification problems. Formally, in order to build a classifier that
can recognize instances of a specific class of concepts, this one must be
trained with a large set of annotated samples. In a 2-class problem, this
set will be made of positive samples representing instances of the class
to be learned, and of negative samples made of counter-examples of
instances not belonging to the class of interest. From these observations,
a decision function predicting the correct class of any input instances



has to be learned.

In computer vision, those samples are images (or video segments). The
first thing to do is therefore find a representation that will ideally
describe the content of each image in a compact and distinctive way.
One simplistic representation could be to use a fixed-size thumbnail
image. The row-by-row succession of the pixels of this thumbnail image
forms a vector that can then be used as a training sample presented to a
machine learning algorithm. Other alternative and probably more
effective representations can also be used. The recipes of this chapter
describe different image representations and introduce some well-known
machine learning algorithms. We should emphasize that we will not be
able to cover in detail, all the theoretical aspects of the different
machine learning techniques discussed in the recipes; our objective is
rather to present the main principles governing their functioning.



Recognizing faces using nearest
neighbors of local binary patterns
Our first exploration of machine learning techniques will start with what
is probably the simplest approach, namely nearest neighbor
classification. We will also present the local binary pattern feature, a
popular representation encoding the textural patterns and contours of an
image in a contrast independent way.

Our illustrative example will concern the face recognition problem. This
is a very challenging problem that has been the object of numerous
researches over the past 20 years. The basic solution we present here is
one of the face recognition methods implemented in OpenCV. You will
quickly realize that this solution is not very robust and works only under
very favorable conditions. Nevertheless, this approach constitutes an
excellent introduction to machine learning and to the face recognition
problem.

How to do it...
The OpenCV library proposes a number of face recognition methods
implemented as a subclass of the generic cv::face::FaceRecognizer. In
this recipe, we will have a look at the cv::face::LBPHFaceRecognizer
class, which is interesting to us because it is based on a simple but often
very effective classification approach, the nearest neighbor classifier.
Moreover, the image representation it uses is built from the local binary
pattern feature (LBP) which is a very popular way of describing image
patterns.

In order to create an instance of the cv::face::LBPHFaceRecognizer, its
static create method is called:

    cv::Ptr<cv::face::FaceRecognizer> recognizer =
           cv::face::createLBPHFaceRecognizer(1, // radius of 
LBP pattern 
                   8,       // the number of neighboring pixels 



to consider 
                   8, 8,    // grid size 
                   200.8);  // minimum distance to nearest 
neighbor 

As will be explained in the next section, the first two arguments
provided serve to describe the characteristic of the LBP feature to be
used. The next step is to feed the recognizer with a number of reference
face images. This is done by providing two vectors, one containing the
face images and the other one containing the associated labels. Each
label is an arbitrary integer value identifying a particular individual. The
idea is to train the recognizer by showing it different images of each of
the people to be recognized. As you may imagine, the more
representative images you provide, the better the chances that the
correct person will be identified. In our very simplistic example, we
simply provide two images of two reference persons. The train method
is the one to call:

    // vectors of reference image and their labels 
    std::vector<cv::Mat> referenceImages; 
    std::vector<int> labels; 
    // open the reference images 
    referenceImages.push_back(cv::imread("face0_1.png",
                              cv::IMREAD_GRAYSCALE)); 
    labels.push_back(0); // person 0 
    referenceImages.push_back(cv::imread("face0_2.png",
                              cv::IMREAD_GRAYSCALE)); 
    labels.push_back(0); // person 0 
    referenceImages.push_back(cv::imread("face1_1.png",
                              cv::IMREAD_GRAYSCALE)); 
    labels.push_back(1); // person 1 
    referenceImages.push_back(cv::imread("face1_2.png",
                              cv::IMREAD_GRAYSCALE)); 
    labels.push_back(1); // person 1 
 
    // train the recognizer by computing the LBPHs 
    recognizer->train(referenceImages, labels); 

The images used are below, with the top row being images of person 0
and the second row images of person 1:



The quality of these reference images is also very important. In addition,
it would be a good idea to have them normalized such as to have the
main facial features at standardized locations. For example, having the
tip of the nose located in the middle of the image, and the two eyes
horizontally aligned at a specific image row. Facial feature detection
methods exist that can be used to automatically normalize face images
this way. This was not done in our example, and the robustness of the
recognizer will suffer from this. Nevertheless, this one is ready to be
used, an input image can be provided, and it will try to predict the label
to which this face image corresponds:

    // predict the label of this image 
    recognizer->predict(inputImage,      // face image  
                        predictedLabel,  // predicted label of 
this image  
                        confidence);     // confidence of the 
prediction 

Our input image is the following:



Not only does the recognizer return the predicted label, but it also
returns a confidence score. In the case of the
cv::face::LBPHFaceRecognizer, the lower this confidence value is, the
more confident is the recognizer of its prediction. Here, we obtain a
correct label prediction (1) with a confidence value of 90.3.

How it works...
In order to understand the functioning of the face recognition approach
presented in this recipe, we need to explain its two main components:
the image representation used and the classification method that is
applied.

As its name indicates, the cv::face::LBPHFaceRecognizer algorithm
makes use of the LBP feature. This is a contrast independent way of
describing image patterns present in an image. It is a local representation
that transforms every pixel into a binary representation encoding the
pattern of image intensities found in a neighborhood. To achieve this



goal, a simple rule is applied; a local pixel is compared to each of its
selected neighbors; if its value is greater than that of its neighbor, then a
0 is assigned to the corresponding bit position, if not, then a 1 is
assigned. In its simplest and most common form, each pixel is compared
to its 8 immediate neighbors, which generates an 8-bit pattern. For
example, let's consider the following local pattern:

Applying the described rule generates the following binary values:



Taking as initial position, the top left pixel and moving clockwise, the
central pixel will be replaced by the binary sequence 11011000.
Generating a complete 8-bit LBP image is then easily achieved by
looping over all pixels of an image to produce all corresponding LBP
bytes. This is accomplished by the following function:

    //compute the Local Binary Patterns of a gray-level image 
    void lbp(const cv::Mat &image, cv::Mat &result) { 
 
      result.create(image.size(), CV_8U); // allocate if 
necessary 
 
      for (int j = 1; j<image.rows - 1; j++) { 
        //for all rows (except first and last) 
 
        // pointers to the input rows 
        const uchar* previous = image.ptr<const uchar>(j - 1);     
        const uchar* current  = image.ptr<const uchar>(j);        
        const uchar* next     = image.ptr<const uchar>(j + 1);    
        uchar* output = result.ptr<uchar>(j);        //output 
row 
 
        for (int i = 1; i<image.cols - 1; i++) { 
 
          // compose local binary pattern 
          *output =  previous[i - 1] > current[i] ? 1 : 0; 
          *output |= previous[i] > current[i] ?     2 : 0; 
          *output |= previous[i + 1] > current[i] ? 4 : 0; 
          *output |= current[i - 1] > current[i] ?  8 : 0; 
          *output |= current[i + 1] > current[i] ? 16 : 0; 
          *output |= next[i - 1] > current[i] ?    32 : 0; 
          *output |= next[i] > current[i] ?        64 : 0; 
          *output |= next[i + 1] > current[i] ?   128 : 0; 
          output++; // next pixel 
        } 
      } 
      // Set the unprocess pixels to 0 
      result.row(0).setTo(cv::Scalar(0)); 
      result.row(result.rows - 1).setTo(cv::Scalar(0)); 
      result.col(0).setTo(cv::Scalar(0)); 
      result.col(result.cols - 1).setTo(cv::Scalar(0)); 
    } 



The body of the loop compares each pixel with its 8 neighbors and the
bit values are assigned through simple bit shifts. With the following
image:

An LBP image is obtained and can be displayed as a gray-level image:



This gray-level representation is not really interpretable, but it simply
illustrates the encoding process that occurred.

Returning to our cv::face::LBPHFaceRecognizer class, it can be seen
that the first two parameters of its create method specify the size
(radius in pixels) and dimension (number of pixels along the circle,
possibly applying interpolation) of the neighborhood to be considered.
Once the LBP image is generated, the image is divided into a grid. The
size of this grid is specified as the third parameter of the create method.
For each block of this grid, a histogram of LBP values is constructed. A
global image representation is finally obtained by concatenating the bin
counts of all these histograms into one large vector. With an 8×8 grid, the
set of computed 256-bin histograms then forms a 16384-dimensional
vector.

The train method of the cv::face::LBPHFaceRecognizer class therefore



generates this long vector for each of the provided reference images.
Each face image can then be seen as a point in a very high dimensional
space. When a new image is submitted to the recognizer through its
predict method, the closest reference point to this image is found. The
label associated with this point is therefore the predicted label and the
confidence value will be the computed distance. This is the principle
that defines a nearest neighbor classifier. One more ingredient is
generally added. If the nearest neighbor of the input point is too far from
it, then this could mean that this point in fact does not belong to any of
the reference classes. How far away must this point be to be considered
as an outlier? This is specified by the fourth parameter of the create
method of the cv::face::LBPHFaceRecognizer class.

As you can see, this is a very simple idea and it turns out to be very
effective when the different classes generate distinct clouds of points in
the representational space. Another benefit of this approach is that the
method implicitly handles multiple classes, as it simply reads the
predicted class from its nearest neighbors. The main drawback is its
computational cost. Finding the nearest neighbor in such a large space,
possibly composed of many reference points, can take time. Storing all
these reference points is also costly in memory.

See also
The article by T. Ahonen, A. Hadid and M. Pietikainen, Face
description with Local Binary Patterns: Application to Face
Recognition in IEEE transaction on Pattern Analysis and Machine
Intelligence, 2006 describes the use of LBP for face recognition
The article by B. Froba and A. Ernst, Face detection with the
modified census transform in IEEE conference on Automatic Face
and Gesture Recognition, 2004 proposes a variant of the LBP
features
The article by M. Uricar, V. Franc and V. Hlavac, Detector of
Facial Landmarks Learned by the Structured Output SVM in
International Conference on Computer Vision Theory and
Applications, 2012 describes a facial feature detector based on the
SVMs discussed in the last recipe of this chapter



Finding objects and faces with a
cascade of Haar features
We learned in the previous recipe, some of the basic concepts of
machine learning. We showed how a classifier can be built by collecting
samples of the different classes of interest. However, for the approach
that was considered in this previous recipe, training a classifier simply
consists of storing all the samples' representations. From there, the label
of any new instance can be predicted by looking at the closest (nearest
neighbor) labeled point. For most machine learning methods, training is
rather an iterative process during which machinery is built by looping
over the samples. Performance of the classifier thus produced gradually
improves as more samples are presented. Learning eventually stops
when a certain performance criterion is reached or when no more
improvements can be obtained by considering the current training
dataset. This recipe will present a machine learning algorithm that
follows this procedure, the cascade of boosted classifiers.

But before we look at this classifier, we will first turn our attention to
the Haar feature image representation. We indeed learned that a good
representation is an essential ingredient in the production of a robust
classifier. LBPs, as described in the previous recipe, Recognizing faces
using nearest neighbors of local binary patterns, constitute one
possible choice; the next section describes another popular
representation.

Getting ready
The first step in the generation of a classifier is to assemble a
(preferably) large collection of image samples showing different
instances of the classes of objects to be identified. The way these
samples are represented has been shown to have an important impact on
the performance of the classifier that is to be built from them. Pixel-
level representations are generally considered to be too low-level to
robustly describe the intrinsic characteristics of each class of objects.



Representations that can describe, at various scales, the distinctive
patterns present in an image are preferable. This is the objective of the
Haar features also sometimes called Haar-like features because they
derive from the Haar transform basis functions.

The Haar features define small rectangular areas of pixels, these later
being compared through simple subtractions. Three different
configurations are generally considered, namely the 2-rectangle, 3-
rectangle, and 4-rectangle features

These features can be of any size and applied on any area of the image
to be represented. For example, here are two Haar features applied on a
face image:

Building a Haar representation consists of selecting a number of Haar
features of given types, sizes, and locations and applying them on
images. The specific set of values obtained from the chosen set of Haar
features constitutes the image representation. The challenge is then to
determine which set of features to select. Indeed, to distinguish one class



of objects from another, some Haar features must be more relevant than
others. For example, in the case of the class of face images, applying a
3-rectangle Haar feature between the eyes (as shown in the figure
above) could be a good idea as we expect all face images to consistently
produce a high value in this case. Obviously, since there exist hundreds
of thousands of possible Haar features, it would certainly be difficult to
manually make a good selection. We are then looking for a machine
learning method that would select the most relevant features for a given
class of objects.

How to do it...
In this recipe, we will learn how we can build, using OpenCV, a boosted
cascade of features to produce a 2-class classifier. But before we do,
let's explain the terminology that is used here. A 2-class classifier is one
that can identify the instances of one class (for example, face images)
from the rest (for example, images that do not contain faces). We
therefore have in this case the positive samples (that is, face images)
and the negative samples (that is, non-face images), these latter are also
called the background images. The classifier of this recipe will be made
of a cascade of simple classifiers that will be sequentially applied. Each
stage of the cascade will make a quick decision about rejecting or not
rejecting the object shown based on the values obtained for a small
subset of features. This cascade is boosted in the sense that each stage
improves (boosts) the performance of the previous ones by making more
accurate decisions. The main advantage of this approach is that the early
stages of the cascade are composed of simple tests that can then quickly
reject instances that certainly do not belong to the class of interest.
These early rejections make the cascade classifier quick, because when
searching for a class of objects by scanning an image, most sub-windows
to be tested will not belong to the class of interest. This way, only few
windows will have to pass through all stages before being accepted or
rejected.

In order to train a boosted classifier cascade for a specific class,
OpenCV offers a software tool that will perform all the required



operations. When you install the library, you should have two
executable modules created and located in the appropriate bin directory,
these are opencv_createsamples.exe and opencv_traincascade.exe.
Make sure your system PATH points to this directory so that you can
execute these tools from anywhere.

When training a classifier, the first thing to do is to collect the samples.
The positive ones are made of images showing instances of the target
class. In our simple example, we decided to train a classifier to recognize
stop signs. Here are the few positive samples we have collected:

The list of the positive samples to be used must be specified in a text file
that we have, here, named stop.txt. It contains image filenames and
bounding box coordinates:

    stop00.png 1 0 0 64 64 
    stop01.png 1 0 0 64 64 
    stop02.png 1 0 0 64 64 
    stop03.png 1 0 0 64 64 
    stop04.png 1 0 0 64 64 
    stop05.png 1 0 0 64 64 
    stop06.png 1 0 0 64 64 
    stop07.png 1 0 0 64 64 

The first number after the filename is the number of positive samples
visible in the image. Next is the upper left coordinate of the bounding
box containing this positive sample and finally its width and height. In



our case, the positive samples have already been extracted from their
original images, this is why we have always one sample per file and
upper-left coordinates at (0,0). Once this file is available, you can then
create the positive sample file by running the extractor tool.

    opencv_createsamples -info stop.txt -vec stop.vec -w 24 -h 
24 -num 8

This will create an output file stop.vec that will contain all the positive
samples specified in the input text file. Note that we made the sample
size smaller (24×24) than the original size (64×64). The extractor tool
resizes all samples to the specified size. Usually, Haar features work
better with smaller templates, but this is something that has to be
validated on a case-by-case basis.

The negative samples are simply background images containing no
instances of the class of interest (no stop signs in our case). But these
images should show a good variety of what the classifier is expected to
see. These negative images could be of any size, the training tool will
extract random negative samples from them. Here is one example of a
background image we wish to use.

Once the positive and negative sample sets are in place, the classifier



cascade is ready to be trained. Calling the tool is done as follows:

     opencv_traincascade  -data classifier -vec stop.vec   
                     -bg neg.txt -numPos 9  -numNeg 20 
                     -numStages 20 -minHitRate 0.95  
                     -maxFalseAlarmRate 0.5 -w 24 -h 24 

The parameters used here will be explained in the next section. Note
that this training process can take a very long time; in some complex
cases with thousands of samples, it can even take days to execute. As it
runs, the cascade trainer will print out performance reports each time
the training of a stage is completed. In particular, the classifier will tell
you what the current hit rate (HR) is; this is the percentage of positive
samples that are currently accepted by the cascade (that is, correctly
recognized as positive instances, they are also called the true positives).
You want this number to be as close as possible to 1.0. It will also give
you the current false alarm rate (FA) which is the number of tested
negative samples that are wrongly classified as positive instances (also
called the false positives). You want this number to be as close as
possible to 0.0. These numbers are reported for each of the features
introduced in each stage.

Our simple example took only few seconds. The structure of the
classifier produced is described in an XML file that results from the
training phase. The classifier is then ready to be used! You can submit
any sample to it and it will tell you if it thinks that it is a positive or a
negative one.

In our example, we trained our classifier with 24×24 images but in
general, what you want is to find out if there are any instances of your
class of objects somewhere in an image (of any size). To achieve this
objective, you simply have to scan the input image and extract all
possible windows of the sample size. If your classifier is accurate
enough, only the windows that contain the seek objects will return a
positive detection. But this works as long as the visible positive samples
have the appropriate size. To detect instances at multiple scales, you
then have to build a pyramid of images by reducing the size of the
original image by a certain factor at each level of the pyramid. This way,



bigger objects will eventually fit the trained sample size as we go down
the pyramid. This is a long process, but the good news is that OpenCV
provides a class that implements this process. Its use is pretty
straightforward. First you construct the classifier by loading the
appropriate XML file:

    cv::CascadeClassifier cascade; 
    if (!cascade.load("stopSamples/classifier/cascade.xml")) { 
      std::cout << "Error when loading the cascade classfier!"   
                << std::endl;   
      return -1; 
    } 

Then, you call the detection method with an input image:

    cascade.detectMultiScale(inputImage, // input image 
              detections,           // detection results 
              1.1,                  // scale reduction factor 
              2,                 // number of required neighbor 
detections 
              0,                    // flags (not used) 
              cv::Size(48, 48),     // minimum object size to 
be detected 
              cv::Size(128, 128));  // maximum object size to 
be detected 

The result is provided as a vector of cv::Rect instances. To visualize the
detection results, you just have to draw these rectangles on your input
image:

    for (int i = 0; i < detections.size(); i++) 
     cv::rectangle(inputImage, detections[i],  
                   cv::Scalar(255, 255, 255), 2); 

When our classifier is tested on an image, here is the result we obtained:



How it works...
In the previous section we explained how it is possible to build an
OpenCV cascade of classifiers using positive and negative samples of a
class of objects. We will now overview the basic steps of the learning
algorithm used to train this cascade. Our cascade has been trained using
the Haar features that were described in the introductory section of this
recipe but, as we will see, any other simple feature can be used to build
a boosted cascade. As the theory and principles of boosted learning are
pretty complex, we will not cover all aspects in this recipe; interested
readers should refer to the articles listed in the last section.

Let's first restate that there are two core ideas behind the cascade of
boosted classifiers. The first one is that a strong classifier can be built by
combining together several weak classifiers (that is, those based on
simple features). Secondly, because in machine vision, negative



instances are found much more frequently than the positive ones,
effective classification can be performed in stages. The early stages
make quick rejection of obvious negative instances, and more refined
decisions can be made at later stages for more difficult samples. Based
on these two ideas, we now describe the boosted cascade learning
algorithm. Our explanations are based on the variant of boosting called
AdaBoost , which is the one most often used. Our description will also
allow us to explain some of the parameters used in the
opencv_traincascade tool.

In this recipe, we use the Haar features in order to build our weak
classifier. When one Haar feature is applied (of given type, size, and
location), a value is obtained. A simple classifier is then obtained by
finding the threshold value that would best classify the negative and
positive class instances based on this feature value. To find this optimal
threshold, we have at our disposal, a number of positive and negative
samples (the number of positive and negative samples to be used at this
step by opencv_traincascade is given by the -numPos and -numNeg
parameters). Since we have a large number of possible Haar features, we
examine all of them and select the one that best classifies our sample
set. Obviously, this very basic classifier will make errors (that is,
misclassify several samples); this is why we need to build several of
these classifiers. These classifiers are added iteratively, each time
searching for the new Haar feature giving the best classification. But
since, at each iteration, we want to focus on the samples that are
currently misclassified, the classification performance is measured by
giving a higher weight to the misclassified samples. A set of simple
classifiers is thus obtained and a strong classifier is then built from a
weighted sum of these weak classifiers (classifiers with better
performance being given a higher weight). Following this approach, a
strong classifier with good performance can be obtained by combining a
few hundred simple features.

But in order to build a cascade of classifiers in which early rejection is a
central mechanism, we do not want a strong classifier made of a large
number of weak classifiers. Instead, we need to find very small



classifiers that will use only a handful of Haar features in order to
quickly reject the obvious negative samples while keeping all positive
ones. In its classical form, AdaBoost aims at minimizing the total
classification error by counting the number of false negatives (a positive
sample classified as a negative one) and false positives (a negative
sample classified as a positive one). In the present case, we need to have
most, if not all, the positive samples correctly classified while
minimizing the false positive rate. Fortunately, it is possible to modify
AdaBoost such that true positives are rewarded more strongly.
Consequently, when training each stage of a cascade, two criteria must
be set: the minimum hit rate and the maximum false alarm rate; in
opencv_traincascade these are specified using the -minHitRate (0.995
default value) and -maxFalseAlarmRate (0.5 default value) parameters.
Haar features are added to the stage until the two performance criteria
are met. The minimum hit rate must be set pretty high to make sure the
positive instances will go through the next stage; remember that if a
positive instance is rejected by a stage, then this error cannot be
recovered. Therefore, to facilitate the generation of a classifier of low
complexity, you should set the maximum false alarm rate relatively high.
Otherwise, your stage will need many Haar features in order to meet the
performance criteria, which contradicts the idea of early rejection by
simple and quick to compute classifier stages.

A good cascade will therefore be made of early stages with few features,
the number of features per stage growing as you go up the cascade. In
opencv_traincascade, the maximum number of features per stage is set
using the -maxWeakCount (default is 100) parameter and the number of
stages is set using -numStages (default is 20).

When the training of a new stage starts, then new negative samples must
be collected. These are extracted from the provided background images.
The difficulty here is to find negative samples that pass through all
previous stages (that is, that are wrongly classified as positives). The
more stages you have trained, the more difficult it will be to collect
these negative samples. This is why it is important to provide the
classifier with a large variety of background images. It will then be able



to extract patches from these that are difficult to classify (because they
resemble the positive samples). Note also that if at a given stage, the two
performance criteria are met without adding any new features, then the
cascade training is stopped at this point (you can use it as is, or re-train it
by providing more difficult samples). Reciprocally, if the stage is unable
to meet the performance criteria, the training will also be stopped; in this
case you should retry a new training with easier performance criteria.

With a cascade made of n stages, it can easily be shown that the global
performance of the classifier will be at least better than minHitRaten and
maxFalseAlarmRaten. This is the result of each stage being built on top of
the results of the previous cascade of stages. For example, if we
consider the default values of opencv_traincascade, we expect our
classifier to have an accuracy (hit rate) of 0.99520 and a false alarm rate
of 0.520. This means that 90% of the positive instances will be correctly
identified and 0.001% of negative samples will be wrongly classified as
positive. Note that an important consequence of the fact that a fraction
of the positive samples will be lost as we go up the cascade is that you
always have to provide more positive samples than the specified number
of samples to use in each stage. In the numerical example we just gave,
we need numPos to be set at 90% of the number of available positive
samples.

One important question is how many samples should be used for
training? This is difficult to answer but, obviously, your positive sample
set must be large enough to cover a wide range of possible appearances
of your class instances. Your background images should also be relevant.
In the case of our stop sign detector, we included urban images as stop
sign are expected to be seen in that context. A usual rule of thumb is to
have numNeg= 2*numPos, but this has be validated on your own dataset.

Finally, we explained in this recipe how to build a cascade of classifiers
using Haar features. Such features can also be built using other features
such as the Local Binary Patterns discussed in the previous recipes or
the histograms of oriented gradient that will be presented in the next
recipe. The opencv_traincascade has a -featureType parameter
allowing selection of different feature types.



There's more...
The OpenCV library proposes a number of pre-trained cascades that you
can use to detect faces, facial features, people, and other things. You
will find these cascades in the form of XML files in the data directory of
the library source directory.

Face detection with a Haar cascade

The pre-trained models are ready to be used. All you have to do is to
create an instance of the cv::CascadeClassifier class using the
appropriate XML file:

    cv::CascadeClassifier faceCascade; 
    if 
(!faceCascade.load("haarcascade_frontalface_default.xml")) { 
      std::cout << "Error when loading the face cascade 
classfier!"  
                << std::endl; 
      return -1; 
    } 

Then to detect faces with Haar features, you proceed this way:

    faceCascade.detectMultiScale(picture, // input image 
               detections,           // detection results 
               1.1,                  // scale reduction factor 
               3,                 // number of required 
neighbor detections 
               0,                    // flags (not used) 
               cv::Size(48, 48),     // minimum object size to 
be detected 
               cv::Size(128, 128));  // maximum object size to 
be detected 
  
    // draw detections on image 
    for (int i = 0; i < detections.size(); i++) 
      cv::rectangle(picture, detections[i],  
                    cv::Scalar(255, 255, 255), 2); 

The same process can be repeated for an eye detector, and the following
image is obtained:



See also
The Describing and matching local intensity patterns recipe in
Chapter 9 , Describing and Matching Interest Points, described the
SURF descriptor which also uses Haar-like features
The article Rapid object detection using a boosted cascade of
simple features by P. Viola and M. Jones in Computer Vision and
Pattern Recognition conference, 2001, is the classical paper that
describes the cascade of boosted classifiers and the Haar features
The article A short introduction to boosting by Y. Freund and R.E.
Schapire in Journal of Japanese Society for Artificial Intelligence,
1999 describes the theoretical foundations of boosting
The article Filtered Channel Features for Pedestrian Detection by
S. Zhang, R. Benenson and B. Schiele in IEEE Conference on
Computer Vision and Pattern Recognition, 2015 presents features
similar to Haar and that can produce highly accurate detections



Detecting objects and people with
Support Vector Machines and
histograms of oriented gradients
This recipe presents another machine learning method, the Support
Vector Machines (SVM), which can produce accurate 2-class
classifiers from training data. They have been largely used to solve many
computer vision problems. This time, classification is solved by using a
mathematical formulation that looks at the geometry of the problem in
high-dimension spaces.

In addition, we will also present a new image representation that is often
used in conjunction with SVMs to produce robust object detectors.

Getting ready
Images of objects are mainly characterized by their shape and textural
content. This is the aspect that is captured by the Histogram of
Oriented Gradients (HOG) representation. As its name indicates, this
representation is based on building histograms from image gradients. In
particular, because we are more interested by shapes and textures, it is
the distribution of the gradient orientations that is analyzed. In addition,
in order to take into consideration the spatial distribution of these
gradients, multiple histograms are computed over a grid that divides the
image into regions.

The first step in building a HOG representation is therefore to compute
the gradient of an image. The image is then subdivided into small cells
(for example, 8×8 pixels) and histograms of gradient orientations are
built for each of these cells. The range of possible orientations must
therefore be divided into bins. Most often, only the gradient orientations
are considered but not their directions (these are called unsigned
gradients). In this case, the range of possible orientations is from 0 to 180
degrees. A 9-bin histogram in this case would divide the possible



orientations into intervals of 20 degrees. Each gradient vector in a cell
contributes to a bin with a weight corresponding to the magnitude of this
gradient.

The cells are then grouped into blocks. A block is then made of a certain
number of cells. These blocks that cover the image can overlap each
other (that is, they can share cells). For example, in the case where
blocks are made of 2×2 cells, a new block can be defined every one cell;
this would represent a block stride of 1 cell and each cell (except the last
one in a row) would then contribute to 2 blocks. Conversely, with a
block stride of 2 cells, the blocks would not overlap at all. A block
contains a certain number of cell histograms (for example, 4 in the case
of a block made of 2×2 cells). These histograms are simply concatenated
together to form a long vector (for example, 4 histograms of 9 bins each
then produce a vector of length 36). To make the representation
invariant to changes in contrast, this vector is then normalized (for
example, each element is divided by the magnitude of the vector).
Finally you also concatenate together all the vectors associated with all
blocks of the image (row order) into a very large one (for example, in a
64×64 image, you will have a total of seven 16×16 blocks when a stride
of 1 is applied on cells of size 8×8; this represents a final vector of 49x36
= 1764 dimensions). This long vector is the HOG representation of the
image.

As you can see, the HOG of an image leads to a vector of very high
dimension (see the There's more... section of this recipe that proposes a
way to visualize a HOG representation). This vector characterizes the
image and can then be used to classify images of different classes of
objects. To achieve this goal, we therefore need a machine learning
method that can handle vectors of very high dimension.

How to do it...
In this recipe, we will build another stop sign classifier. This is obviously
just a toy example that serves to illustrate the learning procedure. As we
explained in the previous recipe, the first step is to collect samples for
training. In our example, the set of positive samples that we will be using



is the following:

And our (very small) set of negative samples is as follows:

We will now learn how to differentiate these two classes using SVM as
implemented in the cv::svm class. To build a robust classifier, we will
represent our class instances using HOG as described in the introductory
section of this recipe. More precisely, we will use 8×8 blocks made of
2×2 cells with a block stride of 1 cell:

    cv::HOGDescriptor hogDesc(positive.size(), // size of the 
window 
                              cv::Size(8, 8),  // block size 
                              cv::Size(4, 4),  // block stride 



                              cv::Size(4, 4),  // cell size 
                              9);              // number of 
bins 

With 9-bin histograms and 64×64 samples, this configuration produces
HOG vectors (made of 225 blocks) of size 8100. We compute
this descriptor for each of our samples and transfer them into a single
matrix (one HOG per row):

    // compute first descriptor  
    std::vector<float> desc; 
    hogDesc.compute(positives[0], desc); 
 
    // the matrix of sample descriptors 
    int featureSize = desc.size(); 
    int numberOfSamples = positives.size() + negatives.size(); 
 
    // create the matrix that will contain the samples HOG 
    cv::Mat samples(numberOfSamples, featureSize, CV_32FC1); 
    // fill first row with first descriptor 
    for (int i = 0; i < featureSize; i++) 
      samples.ptr<float>(0)[i] = desc[i]; 
 
    // compute descriptor of the positive samples 
    for (int j = 1; j < positives.size(); j++) { 
      hogDesc.compute(positives[j], desc); 
      // fill the next row with current descriptor 
      for (int i = 0; i < featureSize; i++) 
        samples.ptr<float>(j)[i] = desc[i]; 
    } 
    // compute descriptor of the negative samples 
    for (int j = 0; j < negatives.size(); j++) { 
      hogDesc.compute(negatives[j], desc); 
      // fill the next row with current descriptor 
      for (int i = 0; i < featureSize; i++) 
        samples.ptr<float>(j + positives.size())[i] = desc[i]; 
    } 

Note how we computed the first HOG in order to obtain the size of the
descriptor and then created the matrix of descriptors. A second matrix is
then created to contain the labels associated to each sample. In our case,
the first rows are the positive samples (and must be assigned a label of
1), the reminder rows are the negative  samples (labeled -1):



    // Create the labels 
    cv::Mat labels(numberOfSamples, 1, CV_32SC1); 
    // labels of positive samples 
    labels.rowRange(0, positives.size()) = 1.0; 
    // labels of negative samples 
    labels.rowRange(positives.size(), numberOfSamples) = -1.0; 

The next step is to build the SVM classifier that will be used for training;
we also select the type of SVM and the kernel to be used (these
parameters will be discussed in the next section):

    // create SVM classifier 
    cv::Ptr<cv::ml::SVM> svm = cv::ml::SVM::create(); 
    svm->setType(cv::ml::SVM::C_SVC); 
    svm->setKernel(cv::ml::SVM::LINEAR); 

We are now ready for training. The labeled samples are first provided to
the classifier and the train method is called:

    // prepare the training data 
    cv::Ptr<cv::ml::TrainData> trainingData = 
           cv::ml::TrainData::create(samples,
                              cv::ml::SampleTypes::ROW_SAMPLE, 
labels); 
    // SVM training 
    svm->train(trainingData); 

Once the training phase completes, any sample of unknown class can be
submitted to the classifier, which will try to predict the class to which it
belongs (here we test four samples):

    cv::Mat queries(4, featureSize, CV_32FC1); 
 
    // fill the rows with query descriptors 
    hogDesc.compute(cv::imread("stop08.png",  
                           cv::IMREAD_GRAYSCALE), desc); 
    for (int i = 0; i < featureSize; i++) 
      queries.ptr<float>(0)[i] = desc[i]; 
    hogDesc.compute(cv::imread("stop09.png",  
                           cv::IMREAD_GRAYSCALE), desc); 
    for (int i = 0; i < featureSize; i++) 
      queries.ptr<float>(1)[i] = desc[i]; 
    hogDesc.compute(cv::imread("neg08.png",  
                           cv::IMREAD_GRAYSCALE), desc); 



    for (int i = 0; i < featureSize; i++) 
      queries.ptr<float>(2)[i] = desc[i]; 
    hogDesc.compute(cv::imread("neg09.png",  
                           cv::IMREAD_GRAYSCALE), desc); 
    for (int i = 0; i < featureSize; i++) 
      queries.ptr<float>(3)[i] = desc[i]; 
    cv::Mat predictions; 
 
    // Test the classifier  
    svm->predict(queries, predictions); 
    for (int i = 0; i < 4; i++) 
      std::cout << "query: " << i << ": " <<  
               ((predictions.at<float>(i,) < 0.0)?  
                   "Negative" : "Positive") << std::endl; 

If the classifier has been trained with representative samples, then it
should be able to correctly predict the label of a new instance.

How it works...
In our stop sign recognition example, each instance of our class is
represented by a point in an 8100-dimensional HOG space. It is
obviously impossible to visualize such a large space but the idea behind
support vector machines is to trace a boundary in that space that will
segregate points that belongs to one class from points belonging to the
other class. More specifically, this boundary will in fact be just a simple
hyperplane. This idea is better explained considering a 2D space where
each instance is represented as a 2D point. The hyperplane is, in this
case, a simple line.



This is obviously a trivial example but, conceptually, working in a two-
dimensional space or in a 8100-dimensional space is the same thing. The
preceding figure shows then, how a simple line can separate the points
of the two classes well. In the case illustrated here, it can also be seen
that many other lines could also achieve this perfect class separation.
One question is therefore; which exact line one should choose. To
answer this question, you must first realize that the samples we used to
build our classifier constitute just a small snapshot of all possible
instances that will need to be classified when the classifier is used in a
target application. This means that we would like our classifier, not only
to be able to correctly separate the provided sample sets but we also
would like this one to make the best decision on the future instances
shown to it. This concept is often referred to as the generalization
power of a classifier. Intuitively, it would be reasonable to believe that
our separating hyperplane should be located in between the two classes,
not closer to one class than the other. More formally, SVMs propose
setting the hyperplane at a position that maximizes the margin around
the defined boundary. This margin is defined as the minimum distance
between the separating hyperplane and the closest point in the positive
sample set plus the distance between the hyperplane and the closest
negative sample. The closest points (the ones that define the margin) are



called the support vectors. The mathematics behind SVM defines an
optimization function aiming at identifying these support vectors.

But the proposed solution to the classification problem cannot be that
simple. What happens if the distribution of the sample points is as
follows?

In this case, a simple hyperplane (a line here) cannot achieve a proper
separation. SVM solves this problem by introducing artificial variables
that bring the problem into a higher dimensional space through some
non-linear transformations. For example, in the example above, one
might propose to add the distance to the origin as an additional variable,
that is to compute r= sqrt(x2+y2) for each point. We now have a three-
dimensional space; for simplicity, let's just draw the points on the (r,x)
plane:



As you can see, our set of sample points can now be separated by a
simple hyperplane. This implies that you now have to find the support
vectors in this new space. In fact, in the SVM formulation, you do not
have to bring all the points into that new space, you just have to define a
way to measure point-to-hyperplane distance in that augmented space.
SVM therefore defines kernel functions that allow you to measure this
distance in higher space without having to explicitly compute the point
coordinates in that space. This is just a mathematical trick that explains
why support vectors producing the maximal margin can be efficiently
computed in very high (artificial) dimensional space. This also explains
why, when you want to use support vector machines, you need to
specify which kernel you want to use. This is by applying these kernels
that you will make non-linearly separable to become separable in the
kernel space.

One important remark here however. Since with Support Vector
Machines we often work with features of very high dimension (for
example, 8100 dimension in our HOG example), then it may very well
happen that our samples will be separable with a simple hyperplane.
This is why it still make sense to not use non-linear kernels (or more
precisely to use a linear kernel, that is, cv::ml::SVM::LINEAR) and work
in the original feature space. The resulting classifier will then be



computationally simpler. But for more challenging classification
problems, kernels remain a very effective tool. OpenCV offers you a
number of standard kernels (for example, radial basis functions, sigmoid
functions, and so on); the objective of these is to send the samples into a
larger non-linear space that will make the classes separable by a
hyperplane. SVM has a number of variants; the most common is the C-
SVM, which adds a penalty for each outlier sample that does not lie on
the right side of the hyperplane.

Finally, we insist on the fact that, because of their strong mathematical
foundations, SVMs work very well with features of very high dimension.
In fact, they have been shown to operate best when the number of
dimensions of the feature space is larger than the number of samples.
They are also memory efficient, as they just have to store the support
vectors (in contrast to a method like nearest-neighbor that requires
keeping in memory all sample points).

There's more...
Histograms of oriented gradients and SVM form a good combination for
the construction of good classifiers. One of the reasons for this success
is the fact that HOG can be viewed as a robust high-dimensional
descriptor that captures the essential aspects of an object class. HOG-
SVM classifiers have been used successfully in many applications;
pedestrian detection is one of them.

Finally, since this is the last recipe of this book, we will therefore end it
with a perspective on a recent trend in machine learning that is
revolutionizing computer vision and artificial intelligence.

HOG visualization

HOGs are built from cells combined in overlapping blocks. It is
therefore difficult to visualize this descriptor. Nevertheless, they are
often represented by displaying the histograms associated to each cell.
In this case, instead of aligning the orientation bins in a regular bar
graph, a histogram of orientation can be more intuitively drawn in a star-



shape where each line has the orientation associated to the bin it
represents and the length of the line is proportional to that bin count.
These HOGs representations can then be displayed over an image:

Each cell HOG representation can be produced by a simple function that
accepts an iterator pointing to a histogram. Lines of proper orientation
and length are then drawn for each bin:

    //draw one HOG over one cell 
    void drawHOG(std::vector<float>::const_iterator hog,  
                       // iterator to the HOG 
                 int numberOfBins,       // number of bins 
inHOG 
                 cv::Mat &image,         // image of the cell 
                 float scale=1.0) {      // length multiplier 
 
      const float PI = 3.1415927; 
      float binStep = PI / numberOfBins; 



      float maxLength = image.rows; 
      float cx = image.cols / 2.; 
      float cy = image.rows / 2.; 
 
      // for each bin 
      for (int bin = 0; bin < numberOfBins; bin++) { 
 
        // bin orientation 
        float angle = bin*binStep; 
        float dirX = cos(angle); 
        float dirY = sin(angle); 
        // length of line proportion to bin size 
        float length = 0.5*maxLength* *(hog+bin); 
 
        // drawing the line 
        float x1 = cx - dirX * length * scale; 
        float y1 = cy - dirY * length * scale; 
        float x2 = cx + dirX * length * scale; 
        float y2 = cy + dirY * length * scale; 
        cv::line(image, cv::Point(x1, y1), cv::Point(x2, y2),  
                 CV_RGB(255, 255, 255), 1); 
      } 
    } 

A HOG visualization function will then call this preceding function for
each cell:

    // Draw HOG over an image 
    void drawHOGDescriptors(const cv::Mat &image,  // the input 
image  
             cv::Mat &hogImage, // the resulting HOG image 
             cv::Size cellSize, // size of each cell (blocks 
are ignored) 
             int nBins) {       // number of bins 
 
      // block size is image size 
      cv::HOGDescriptor hog( 
              cv::Size((image.cols / cellSize.width) * 
cellSize.width,     
                       (image.rows / cellSize.height) * 
cellSize.height), 
              cv::Size((image.cols / cellSize.width) * 
cellSize.width,   
                       (image.rows / cellSize.height) * 
cellSize.height),  
              cellSize,    // block stride (ony 1 block here) 



              cellSize,    // cell size 
              nBins);      // number of bins 
  
      //compute HOG 
      std::vector<float> descriptors; 
      hog.compute(image, descriptors); 
      ... 
      float scale= 2.0 / * 
                  
std::max_element(descriptors.begin(),descriptors.end()); 
      hogImage.create(image.rows, image.cols, CV_8U); 
      std::vector<float>::const_iterator itDesc= 
descriptors.begin(); 
 
      for (int i = 0; i < image.rows / cellSize.height; i++) { 
        for (int j = 0; j < image.cols / cellSize.width; j++) {  
          //draw each cell 
             hogImage(cv::Rect(j*cellSize.width, 
i*cellSize.height,  
                      cellSize.width, cellSize.height)); 
           drawHOG(itDesc, nBins,  
                   hogImage(cv::Rect(j*cellSize.width,                   
                                     i*cellSize.height,  
                                     cellSize.width, 
cellSize.height)),  
                   scale); 
          itDesc += nBins; 
        } 
      } 
    } 

This function computes a HOG descriptor having the specified cell size
but made of only one large block (that is, a block having the size of the
image). This representation therefore ignores the effect of normalization
that occurs at each block level.

People detection

OpenCV offers a pre-trained people detector based on HOG and SVM.
As for the classifier cascades of the previous recipe, this SVM classifier
can be used to detect instances in a full image by scanning a window
across the image, at multiple scales. You then just have to construct the
classifier and perform the detection on an image:



    // create the detector 
    std::vector<cv::Rect> peoples; 
    cv::HOGDescriptor peopleHog; 
    peopleHog.setSVMDetector( 
    cv::HOGDescriptor::getDefaultPeopleDetector()); 
    // detect peoples oin an image 
    peopleHog.detectMultiScale(myImage, // input image 
               peoples,           // ouput list of bounding 
boxes  
               0,       // threshold to consider a detection to 
be positive 
               cv::Size(4, 4),    // window stride  
               cv::Size(32, 32),  // image padding 
               1.1,               // scale factor 
               2);                // grouping threshold 

The window stride defines how the 128×64 template is moved over the
image (every 4 pixels horizontally and vertically in our example).
Longer strides make the detection faster (because less windows are
evaluated) but you may then miss some people falling in between tested
windows. The image padding parameter simply adds pixels on the border
of the image such that people at the edge of the image can be detected.
The standard threshold for an SVM classifier is 0 (since 1 is the value
assigned to positive instances and -1 to the negative ones). But if you
really want to be certain that what you detect is a person, then you can
raise this threshold value (this means that you want high precision at
the price of missing some people in the image). Reciprocally, if you want
to be certain of detecting all people (that is you want a high recall rate),
then you can lower the threshold; more false detections will occur in
that case.

Here is an example of the detection results obtained:



It is important to note that when a classifier is applied to a full image,
the multiple windows applied at successive locations will often lead to
multiple detections around a positive sample. The best thing to do when
two or more bounding boxes overlap at about the same location is to
retain only one of them. There is a function called cv::groupRectangles
that simply combines rectangles of similar size at similar locations (this
function is automatically called by detectMultiScale). In fact, obtaining
a group of detections at a particular location can even be seen as an
indicator confirming that we indeed have a positive instance at this
location. This is why the cv::groupRectangles function allows us to
specify the minimum size for a detection cluster to be accepted as a
positive detection (that is, isolated detection should be discarded). This
is the last parameter of the detectMultiScale method. Setting this one at
0 will keep all detections (no grouping done) which, in our example,
leads to the following result:



Deep learning and Convolutional Neural Networks

We cannot conclude this chapter on machine learning without
mentioning deep convolutional neural networks. The application of
these to computer vision classification problems has led to impressive
results. In fact, their outstanding performance when applied to real-
world problems is such that they now open the door to a new family of
applications that could not be envisioned before.

Deep learning is based on the theory of neural networks that was
introduced in the late 1950s. So why are they generating such great
interest today? Basically for two reasons: first, the computational power
that is available nowadays allows deploying neural networks of a size
that makes them able to solve challenging problems. While the first
neural network (the perceptron) has only one layer and few weight
parameters to tune, today's networks can have hundreds of layers and



millions of parameters to be optimized (hence the name deep networks).
Second, the large amount of data available today makes their training
possible. In order to perform well, deep networks, indeed, required
thousands, if not millions, of annotated samples (this is required because
of the very large number of parameters that need to be optimized).

The most popular deep networks are the Convolutional Neural
Networks (CNN). As the name suggests, they are based on convolution
operations (see Chapter 6 , Filtering the Images). The parameters to
learn, in this case, are therefore the values inside the kernel of all filters
that compose the network. These filters are organized into layers, in
which the early layers extract the fundamental shapes such as lines and
corners while the higher layers progressively detect more complex
patterns (such as, for example, the presence of eyes, mouth, hair, in a
human detector).

OpenCV3 has a Deep Neural Network module, but this one is mainly
for importing deep networks trained using other tools such as
TensorFlow, Caffe, or Torch. When building your future computer vision
applications, you will certainly have to have a look at the deep learning
theory and its related tools.

See also
The Describing and matching local intensity patterns recipe in
Chapter 9 , Describing and Matching Interest Points, described the
SIFT descriptor which is similar to the HOG descriptor
The article Histograms of Oriented Gradients for Human Detection
by N. Dalal and B. Triggs in Computer Vision and Pattern
Recognition conference, 2005 is the classical paper that introduces
histograms of oriented gradients for people detection
The article Deep Learning by Y. LeCun, Y. Bengio and G. Hinton in
Nature, no 521, 2015, is a good starting point for exploring the
world of deep learning
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